精英家教网 > 高中数学 > 题目详情

设函数f(x)=sin(2x+数学公式)+cos2x+数学公式sinx•cosx.
(1)求函数f(x)的最大值和最小正周期.
(2)设A,B,C为△ABC的三个内角,若cosB=数学公式,f(数学公式)=数学公式,求sinA.

解:(1)函数f(x)=sin(2x+)+cos2x+sinx•cosx=sin2x+cos2x++sin2x
=sin2x+cos2x+=2sin(2x+)+
所以函数f(x)的最大值是,最小正周期为π.
(2)f()=2sin(C+)+=,所以,2sin(C+)=1,
又C为△ABC的内角,所以C=
又因为在△ABC 中,cosB=,所以,sinB=
所以,sinA=sin(B+C)=sinBcosC+cosBsinC=
分析:(1)利用三角函数的恒等变换化简函数f(x)的解析式为2sin(2x+)+,由此求出函数f(x)的最大值以及最小正周期.
(2)根据cosB=,f()=,求出C=,再由sinA=sin(B+C)=sinBcosC+cosBsinC,运算求得结果.
点评:本题主要考查三角函数的恒等变换及化简求值,复合三角函数的周期性和求法,求复合三角函数的值域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+
π6
)-1(ω>0)的导数f′(x)的最大值为2,则f(x)的图象的一个对称中心的坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+
π
3
),现有下列结论:
(1)f(x)的图象关于直线x=
π
3
对称;
(2)f(x)的图象关于点(
π
4
,0)对称
(3)把f(x)的图象向左平移
π
12
个单位,得到一个偶函数的图象;
(4)f(x)的最小正周期为π,且在[0,
π
6
]上为增函数.
其中正确的结论有
 
(把你认为正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+φ)(ω>0,-
π
12
<φ<
π
2
),给出以下四个论断:
①f(x)的周期为π; ②f(x)在区间(-
π
6
,0)上是增函数;
③f(x)的图象关于点(
π
3
,0)对称;④f(x)的图象关于直线x=
π
12
对称.
以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题:
 
 
(只需将命题的序号填在横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f (x)=sin(2x+
π
3
)+
3
3
sin2x-
3
3
cos2x

(1)求f(x)的最小正周期及其图象的对称轴方程;
(2)将函数f(x)的图象向右平移
π
3
个单位长度,得到函数g(x)的图象,求g (x)在区间[-
π
6
π
3
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳一模)设函数f(x)=sin(2x+
π
3
)+2cos2
π
4
-x).
(1)求f(x)的最小正周期及对称轴方程;
(2)设△ABC的三个内角A,B,C的对边分别是a,b,c,若f(
C
2
)=
3
+1,c=
6
,cosB=
3
5
,求b.

查看答案和解析>>

同步练习册答案