精英家教网 > 高中数学 > 题目详情
4.下列说法正确的是(  )
①|$\sqrt{(x+4)^{2}+{y}^{2}}$|-|$\sqrt{(x-4)^{2}+{y}^{2}}$=0        
②|$\sqrt{(x+4)^{2}+{y}^{2}}$+$\sqrt{(x-4)^{2}+{y}^{2}}$=14
③|$\sqrt{(x+4)^{2}+{y}^{2}}$-$\sqrt{(x-4)^{2}+{y}^{2}}$|=6         
④|$\sqrt{(x+4)^{2}+{y}^{2}}$-$\sqrt{(x-4)^{2}+{y}^{2}}$|=18.
A.①表示无轨迹 ②的轨迹是射线B.②的轨迹是椭圆 ③的轨迹是双曲线
C.①的轨迹是射线④的轨迹是直线D.②、④均表示无轨迹

分析 利用几何意义,结合椭圆、双曲线的定义,即可得出结论.

解答 解:$\sqrt{(x+4)^{2}+{y}^{2}}$-$\sqrt{(x-4)^{2}+{y}^{2}}$,表示(x,y),到(-4,0),(4,0)距离的差;$\sqrt{(x+4)^{2}+{y}^{2}}$+$\sqrt{(x-4)^{2}+{y}^{2}}$,表示(x,y),到(-4,0),(4,0)距离的和,
结合选项,可知②的轨迹是椭圆 ③的轨迹是双曲线,
故选B.

点评 本题考查椭圆、双曲线的定义,考查学生分析解决问题的能力,正确理解椭圆、双曲线的定义是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.定义域为R的函数f(x)对任意x都有f(1+x)=f(1-x),且其导数f′(x)满足(x-1)f′(x)>0,则当2<m<4时,有(  )
A.f(2)>f(2m)>f(log2m)B.f(log2m)>f(2m)>f(2)C.f(2m)>f(log2m)>f(2)D.f(2m)>f(2)>f(log2m)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式(x+1)(2-x)≥0的解集为(  )
A.{x|-l≤x≤2}B.{x|-1<x<2}C.{x|x≥2,或-1≤-1}D.{x|x>2,或x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=(x2+mx+m)e-x
(1)当m=0时,求f(x)的单调区间;
(2)若m≤2,证明:当x≥0时,f(x)≤2恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)已知a为常数,且0<a<1,函数f(x)=(1+x)a-ax,求函数f(x)在x>-1上的最大值;
(2)若a,b均为正实数,求证:ab+ba>1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.过点M(5,$\frac{3}{2}$),且以直线y=±$\frac{1}{2}$x为渐近线的双曲线方程为$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若抛物线y2=8x上一点P到其焦点的距离为9,则点P的坐标为(  )
A.(7,±$\sqrt{14}$)B.(14,±$\sqrt{14}$)C.(7,±2$\sqrt{14}$)D.(-7,±2$\sqrt{14}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设集合A={x|x2+x≤0,x∈z},则集合A={-1,0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知椭圆的标准方程为${x^2}+\frac{y^2}{10}=1$,则椭圆的焦点坐标为(  )
A.(-3,0),(3,0)B.(0,-3),(0,3)C.(-$\sqrt{10}$,0),($\sqrt{10}$,0)D.(0,-$\sqrt{10}$),(0,$\sqrt{10}$)

查看答案和解析>>

同步练习册答案