精英家教网 > 高中数学 > 题目详情
15.(x2-x-2)5的展开式中,x3的系数等于120.

分析 根据(x2-x-2)5 =(x-2)5•(x+1)5 ,把(x-2)5和(x+1)5 ,分别利用二项式定理展展开,可得x3的系数.

解答 解:(x2-x-2)5 =(x-2)5•(x+1)5 =
[${C}_{5}^{0}$•x5+${C}_{5}^{1}$•x4•(-2)+${C}_{5}^{2}$•x3•(-2)2+${C}_{5}^{3}$•x2•(-2)3+${C}_{5}^{4}$•x•(-2)4+${C}_{5}^{5}$•(-2)5]•[${C}_{5}^{0}$•x5+${C}_{5}^{1}$•x4+${C}_{5}^{2}$•x3+${C}_{5}^{3}$•x2+${C}_{5}^{4}$•x+${C}_{5}^{5}$],
∴x3的系数等于 ${C}_{5}^{2}$•(-2)2 (${C}_{5}^{5}$)+${C}_{5}^{3}$•(-2)3•${C}_{5}^{4}$+${C}_{5}^{4}$•(-2)4•${C}_{5}^{3}$+${C}_{5}^{5}$•(-2)5•${C}_{5}^{2}$=40-400+800-320=120,
故答案为:120.

点评 本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知数列{an},a1=$\frac{1}{2}$,an+1=$\frac{{3{a_n}}}{{{a_n}+3}}$.
求:(1)写出a2,a3,a4,a5
(2)求出数列{an}的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.i是虚数单位,复数$\frac{{2+{i^3}}}{1-i}$=(  )
A.$\frac{3+3i}{2}$B.$\frac{1+3i}{2}$C.$\frac{1+i}{2}$D.$\frac{3+i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}各项均不为0,其前n项和为Sn,且a1=1,2Sn=anan+1,则Sn=$\frac{n(n+1)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知不等式(x-1)m<2x-1对m∈(0,3)恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知实数x,y满足$\left\{\begin{array}{l}{x+y≤2}\\{y≤x}\end{array}\right.$z=x+ay(a>1)的最大值为3,则实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.要得到函数y=sin(2x-$\frac{π}{3}$)的图象,可将函数y=sin2x的图象向右平移$\frac{π}{6}$个单位.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知无穷数列{an}满足an+1=p•an+$\frac{q}{a_n}$(n∈N*).其中p,q均为非负实数且不同时为0.
(1)若p=$\frac{1}{2}$,q=2,且a3=$\frac{41}{20}$,求a1的值;
(2)若a1=5,p•q=0,求数列{an}的前n项和Sn
(3)若a1=2,q=1,且{an}是单调递减数列,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}为正项等差数列,满足$\frac{1}{{a}_{1}}$+$\frac{4}{{a}_{2k-1}}$≤1(其中k∈N*,且k≥2),则ak的最小值为$\frac{9}{2}$.

查看答案和解析>>

同步练习册答案