精英家教网 > 高中数学 > 题目详情
3.已知数列{an}各项均不为0,其前n项和为Sn,且a1=1,2Sn=anan+1,则Sn=$\frac{n(n+1)}{2}$.

分析 利用递推关系、等差数列的通项公式及其前n项和公式即可得出.

解答 解:当n=1时,2S1=a1a2,即2a1=a1a2,∴a2=2.
当n≥2时,2Sn=anan+1,2Sn-1=an-1an,两式相减得2an=an(an+1-an-1),
∵an≠0,∴an+1-an-1=2,
∴{a2k-1},{a2k}都是公差为2的等差数列,又a1=1,a2=2,
∴{an}是公差为1的等差数列,
∴an=1+(n-1)×1=n,
∴Sn=$\frac{n(n+1)}{2}$.
故答案为:$\frac{n(n+1)}{2}$.

点评 本题考查了递推关系、等差数列的通项公式及其前n项和公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{x-y≤2}\\{2x+y≤4}\end{array}\right.$,则z=$\frac{y+3}{x-1}$的取值范围是(  )
A.(-∞,-3]∪[1,+∞)B.[-1,3]C.(-∞,-1]∪[3,+∞)D.[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.实数x,y满足x2-2xy+2y2=2,则x2+2y2的最小值为4-2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知全集U=R,集合A={-l,0,l,2},B={y|y=2x},图中阴影部分所表示的集合为(  )
A.{-1,0}B.{l,2}C.{-l}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=m$\overrightarrow{a}$-2$\overrightarrow{b}$,是△ABC以BC为斜边的直角三角形,则m=-11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn,a1=3,且对任意的正整数n,都有Sn+1=λSn+3n+1,其中常数λ>0.设bn=$\frac{a_n}{3^n}$(n∈N*)﹒
(1)若λ=3,求数列{bn}的通项公式;
(2)若λ≠1且λ≠3,设cn=an+$\frac{2}{λ-3}×{3^n}$(n∈N*),证明数列{cn}是等比数列;
(3)若对任意的正整数n,都有bn≤3,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.(x2-x-2)5的展开式中,x3的系数等于120.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={x|x2-x=0},B={x|lnx<0},则A∪B=(  )
A.(0,1]B.[0,1)C.(-∞,1]D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足an+2=qan(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列.
(1)求q的值和{an}的通项公式;
(2)设bn=$\frac{{{{log}_2}{a_{2n}}}}{{{a_{2n-1}}}}$,n∈N*,求数列{bn}的前n项和Sn,若不等式λ<Sn+$\frac{n}{{2}^{n-1}}$对一切n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

同步练习册答案