精英家教网 > 高中数学 > 题目详情
在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上.
(Ⅰ)若
PA
+
PB
+
PC
=
0
,求|
OP
|;
(Ⅱ)设
OP
=m
AB
+n
AC
(m,n∈R),用x,y表示m-n,并求m-n的最大值.
考点:平面向量的基本定理及其意义,平面向量的坐标运算
专题:平面向量及应用
分析:(Ⅰ)先根据
PA
+
PB
+
PC
=
0
,以及各点的坐标,求出点p的坐标,再根据向量模的公式,问题得以解决;
(Ⅱ)利用向量的坐标运算,先求出
AB
AC
,再根据
OP
=m
AB
+n
AC
,表示出m-n=y-x,最后结合图形,求出m-n的最小值.
解答: 解:(Ⅰ)∵A(1,1),B(2,3),C(3,2),
PA
+
PB
+
PC
=
0

∴(1-x,1-y)+(2-x,3-y)+(3-x,2-y)=0
∴3x-6=0,3y-6=0
∴x=2,y=2,
OP
=(2,2)
|
OP
|=
22+22
=2
2

(Ⅱ)∵A(1,1),B(2,3),C(3,2),
AB
=(1,2)
AC
=(2,1)

OP
=m
AB
+n
AC

∴(x,y)=(m+2n,2m+n)
∴x=m+2n,y=2m+n
∴m-n=y-x,
令y-x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,
故m-n的最大值为1.
点评:本题考查了向量的坐标运算,关键在于审清题意,属于中档题,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域在R上的函数f(x)=|x+1|+|x-2|的最小值为a.
(1)求a的值;
(2)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:

直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为(  )
A、
1
10
B、
2
5
C、
30
10
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有(  )
A、60种B、70种
C、75种D、150种

查看答案和解析>>

科目:高中数学 来源: 题型:

某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积为(  )
(锥体体积公式:V=
1
3
Sh,其中S为底面面积,h为高)
A、3
B、2
C、
3
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ln(x+1)-
ax
x+a
(a>1).
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设a1=1,an+1=ln(an+1),证明:
2
n+2
<an
3
n+2

查看答案和解析>>

科目:高中数学 来源: 题型:

设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.
(Ⅰ)求同一工作日至少3人需使用设备的概率;
(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个盒子里装有三张卡片,分别标记有1,2,3,这三张卡片除标记的数字外完全相同,随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.
(Ⅰ)求“抽取的卡片上的数字满足a+b=c”的概率;
(Ⅱ)求“抽取的卡片上的数字a,b,c不完全相同”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

观察分析下表中的数据:
多面体面数(F)顶点数(V)棱数(E)
三棱柱569
五棱锥6610
立方体6812
猜想一般凸多面体中F,V,E所满足的等式是
 

查看答案和解析>>

同步练习册答案