精英家教网 > 高中数学 > 题目详情
已知定义域在R上的函数f(x)=|x+1|+|x-2|的最小值为a.
(1)求a的值;
(2)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3.
考点:二维形式的柯西不等式,绝对值不等式的解法
专题:计算题,证明题,不等式的解法及应用
分析:(1)由绝对值不等式|a|+|b|≥|a-b|,当且仅当ab≤0,取等号;
(2)由柯西不等式:(a2+b2+c2)(d2+e2+f2)≥(ad+be+cf)2,即可证得.
解答: (1)解:∵|x+1|+|x-2|≥|(x+1)-(x-2)|=3,
当且仅当-1≤x≤2时,等号成立,
∴f(x)的最小值为3,即a=3;
(2)证明:由(1)知,p+q+r=3,又p,q,r为正实数,
∴由柯西不等式得,(p2+q2+r2)(12+12+12)≥(p×1+q×1+r×1)2
=(p+q+r)2=32=9,
即p2+q2+r2≥3.
点评:本题主要考查绝对值不等式、柯西不等式等基础知识,考查运算求解能力,考查化归与转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图:已知正三棱锥P-ABC,侧棱PA,PB,PC的长为2,且∠APB=30°,E,F分别是侧棱PC,PA上的动点,则△BEF的周长的最小值为(  )
A、8-4
3
B、2
C、2
2
D、1+2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.
(Ⅰ)证明:AC1⊥A1B;
(Ⅱ)设直线AA1与平面BCC1B1的距离为
3
,求二面角A1-AB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图所示的程序框图,回答下列问题:
(Ⅰ)若a=sin
6
,b=lnπ,c=e-
1
2
,则输出的数是a,b,c中的哪一个?请简要说明理由;
(Ⅱ)已知c=2,a,b∈{1,2,3,4},且a≠b,现随机输入a,b的值一次,则输出的a,c的概率分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:

(Ⅰ)求这500件产品质量指标值的样本平均数
.
x
和样本方差s2(同一组中数据用该组区间的中点值作代表);
(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数
.
x
,σ2近似为样本方差s2
(i)利用该正态分布,求P(187.8<Z<212.2);
(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.
附:
150
≈12.2.
若Z-N(μ,σ2)则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则该几何体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a1=1,公差为d,a3>0,当且仅当n=3时,|an|取到最小值,则d的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1中,P,Q分别是棱AB,A1D1上的点,PQ⊥AC,则PQ与BD1所成角的余弦值得取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上.
(Ⅰ)若
PA
+
PB
+
PC
=
0
,求|
OP
|;
(Ⅱ)设
OP
=m
AB
+n
AC
(m,n∈R),用x,y表示m-n,并求m-n的最大值.

查看答案和解析>>

同步练习册答案