| A. | f(x)的最小值为e | B. | f(x)的最大值为e | C. | f(x)的最小值为$\frac{1}{e}$ | D. | f(x)的最大值为$\frac{1}{e}$ |
分析 设g(x)=xf(x),求导,得到f(x)=$\frac{{e}^{x}}{x}$,再根据导数和函数的最值得关系即可求出.
解答 解:设g(x)=xf(x),
∴g′(x)=xf′(x)+f(x)=ex,
∴g(x)=ex,
∴xf(x)=ex,
∴f(x)=$\frac{{e}^{x}}{x}$,
∴f′(x)=$\frac{{e}^{x}(x-1)}{{x}^{2}}$,
令f′(x)=0,解得x=1,
当f′(x)>0,时,解得x>1,函数f(x)在(1,+∞)单调递增,
当f′(x)<0,时,解得0<x<1,函数f(x)在(1,+∞)单调递减,
∴f(x)min=f(1)=e,
故选:A.
点评 本题考查了导数和函数的最值得关系,关键是构造函数,求出函数f(x)的表达式,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{2}$ | C. | 1 | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,2] | B. | [1,$\sqrt{2}$] | C. | [-$\sqrt{2}$,$\sqrt{2}$] | D. | [-$\sqrt{2}$,-1]∪[1,$\sqrt{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,4) | B. | [0,4] | C. | (0,4] | D. | [0,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,+∞) | B. | [$\frac{7}{3}$,+∞) | C. | (-∞,1] | D. | (-∞,$\frac{7}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{4}{{e}^{2}}$] | B. | (0,$\frac{8}{{e}^{2}}$] | C. | [$\frac{4}{{e}^{2}}$,+∞) | D. | [$\frac{8}{{e}^{2}}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com