| A. | 6 | B. | 8 | C. | 10 | D. | 12 |
分析 由$\frac{{C}_{n}^{0}{+C}_{n}^{2}{+C}_{n}^{4}+…{+C}_{n}^{n}}{{C}_{n}^{n-2}{+C}_{n}^{n-1}}$=$\frac{32}{9}$,可得$\frac{\frac{1}{2}×{2}^{n}}{\frac{n(n-1)}{2}+n}$=$\frac{32}{9}$,化简利用整除的性质即可得出.
解答 解:∵$\frac{{C}_{n}^{0}{+C}_{n}^{2}{+C}_{n}^{4}+…{+C}_{n}^{n}}{{C}_{n}^{n-2}{+C}_{n}^{n-1}}$=$\frac{32}{9}$,∴$\frac{\frac{1}{2}×{2}^{n}}{\frac{n(n-1)}{2}+n}$=$\frac{32}{9}$,
化为:2n-5=$\frac{n(n+1)}{9}$,n或n+1必然被9整除.
∵n为正偶数,∴n=8.
故选:B.
点评 本题考查了组合数的运算公式及其性质、二项式定理系数的性质、整除的理论,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 直角三角形 | B. | 等边三角形 | C. | 钝角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com