精英家教网 > 高中数学 > 题目详情
7.设n为正偶数,$\frac{{C}_{n}^{0}{+C}_{n}^{2}{+C}_{n}^{4}+…{+C}_{n}^{n}}{{C}_{n}^{n-2}{+C}_{n}^{n-1}}$=$\frac{32}{9}$,则n的值为(  )
A.6B.8C.10D.12

分析 由$\frac{{C}_{n}^{0}{+C}_{n}^{2}{+C}_{n}^{4}+…{+C}_{n}^{n}}{{C}_{n}^{n-2}{+C}_{n}^{n-1}}$=$\frac{32}{9}$,可得$\frac{\frac{1}{2}×{2}^{n}}{\frac{n(n-1)}{2}+n}$=$\frac{32}{9}$,化简利用整除的性质即可得出.

解答 解:∵$\frac{{C}_{n}^{0}{+C}_{n}^{2}{+C}_{n}^{4}+…{+C}_{n}^{n}}{{C}_{n}^{n-2}{+C}_{n}^{n-1}}$=$\frac{32}{9}$,∴$\frac{\frac{1}{2}×{2}^{n}}{\frac{n(n-1)}{2}+n}$=$\frac{32}{9}$,
化为:2n-5=$\frac{n(n+1)}{9}$,n或n+1必然被9整除.
∵n为正偶数,∴n=8.
故选:B.

点评 本题考查了组合数的运算公式及其性质、二项式定理系数的性质、整除的理论,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.下列数值中最小的是(  )
A.(1010)2B.(12)10C.(11)16D.(1001)8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{αn}的前n项和为n2+pn.数列{bn}的前n项和为32n-n2
(1)若α10=b10,求p的值;
(2)取数列{bn}的第1项.第3项.第5项…构成-个新的数列{cn},求数列{cn}的通项公式;
(3)设dn=|cn|.求数列{dn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设实数x,y满足x2-3xy+y2=1,则x-2y的取值范围是(-∞,-$\frac{2\sqrt{5}}{5}$]∪[$\frac{2\sqrt{5}}{5}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知sin2α=$\frac{\sqrt{5}}{5}$,且α∈(0,$\frac{π}{4}$),则sin4α-cos4α的值为$-\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,sinA=$\frac{33}{65}$,cosC=$\frac{4}{5}$.
(1)求cosB的值;
(2)若$\overrightarrow{AB}$•$\overrightarrow{AC}$=56,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,图1是定义在R上的指数函数g(x)的图象,图2是定义在(0,+∞)上的对数函数h(x)的图象,设f(x)=h(g(x)-1).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求方程f(x)-x+1=0的解;
(Ⅲ)求不等式f(x)<2成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+(4a-3)x+3a,x<0}\\{lo{g}_{a}(x+1)+1,x≥0}\end{array}\right.$(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2-$\frac{x}{3}$恰有两个不相等的实数解,则a的取值范围是[$\frac{1}{3}$,$\frac{2}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,若$\frac{si{n}^{2}B+si{n}^{2}C}{si{n}^{2}A}$=1,则△ABC是(  )
A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形

查看答案和解析>>

同步练习册答案