精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+(4a-3)x+3a,x<0}\\{lo{g}_{a}(x+1)+1,x≥0}\end{array}\right.$(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2-$\frac{x}{3}$恰有两个不相等的实数解,则a的取值范围是[$\frac{1}{3}$,$\frac{2}{3}$).

分析 由减函数可知f(x)在两段上均为减函数,且在第一段的最小值大于或等于第二段上的最大值,作出|f(x)|和y=2-$\frac{x}{3}$的图象,根据交点个数判断3a与2的大小关系,列出不等式组解出.

解答 解:∵f(x)是R上的单调递减函数,
∴y=x2+(4a-3)x+3a在(-∞.,0)上单调递减,y=loga(x+1)+1在(0,+∞)上单调递减,
且f(x)在(-∞,0)上的最小值大于或等于f(0).
∴$\left\{\begin{array}{l}{\frac{3-4a}{2}≥0}\\{0<a<1}\\{3a≥1}\end{array}\right.$,解得$\frac{1}{3}$≤a≤$\frac{3}{4}$.
作出y=|f(x)|和y=2-$\frac{x}{3}$的函数草图如图所示:
由图象可知|f(x)|=2-$\frac{x}{2}$在[0,+∞)上有且只有一解,
∵|f(x)|=2-$\frac{x}{3}$恰有两个不相等的实数解,
∴x2+(4a-3)x+3a=2-$\frac{x}{3}$在(-∞,0)上只有1解,
即x2+(4a-$\frac{8}{3}$)x+3a-2=0在(-∞,0)上只有1解,
∴$\left\{\begin{array}{l}{(4a-\frac{8}{3})^{2}-4(3a-2)=0}\\{-\frac{4a-\frac{8}{3}}{2}<0}\end{array}\right.$或$\left\{\begin{array}{l}{(4a-\frac{8}{3})^{2}-4(3a-2)>0}\\{3a-2<0}\end{array}\right.$,
解得a=$\frac{51}{36}$或a<$\frac{2}{3}$,
又$\frac{1}{3}$≤a≤$\frac{3}{4}$,∴$\frac{1}{3}≤a<\frac{2}{3}$.
故答案为[$\frac{1}{3}$,$\frac{2}{3}$).

点评 本题考查了分段函数的单调性,函数零点的个数判断,结合函数函数图象判断端点值的大小是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.有一块正方形EFGH,EH所在直线是一条小河,收获的蔬菜可送到F点或河边运走.于是,菜地分别为两个区域S1和S2,其中S1中的蔬菜运到河边较近,S2中的蔬菜运到F点较近,而菜地内S1和S2的分界线C上的点到河边与到F点的距离相等,现建立平面直角坐标系,其中原点O为EF的中点,点F的坐标为(1,0),如图
(1)求菜地内的分界线C的方程;
(2)菜农从蔬菜运量估计出S1面积是S2面积的两倍,由此得到S1面积的经验值为$\frac{8}{3}$.设M是C上纵坐标为1的点,请计算以EH为一边,另一边过点M的矩形的面积,及五边形EOMGH的面积,并判断哪一个更接近于S1面积的“经验值”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设n为正偶数,$\frac{{C}_{n}^{0}{+C}_{n}^{2}{+C}_{n}^{4}+…{+C}_{n}^{n}}{{C}_{n}^{n-2}{+C}_{n}^{n-1}}$=$\frac{32}{9}$,则n的值为(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知某炼钢厂车间每年的利润y(万元)与废品率x(%)的一组统计资料如下:
 废品率x1.3  1.5 1.6 1.7 1.9
 利润y 150 120 110 100 70
求y关于x的一元线性回归方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上单调递增,若实数a满足f(2|a-1|)>f(-$\sqrt{2}$),则a的取值范围是(  )
A.(-∞,$\frac{1}{2}$)B.(-∞,$\frac{1}{2}$)∪($\frac{3}{2}$,+∞)C.($\frac{1}{2}$,$\frac{3}{2}$)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>$\sqrt{3}$)的右焦点为F,右顶点为A,已知$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{3e}{|FA|}$,其中O为原点,e为椭圆的离心率.
(1)求椭圆的方程;
(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,且8sin2$\frac{A+B}{2}$-2cos2C=7.
(1)求tanC的值;
(2)若c=$\sqrt{3}$,sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax2+2x-1(a<0).
(1)若a=-1,求函数的零点;
(2)若函数在区间(0,1]上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.为了了解学生的视力情况,随机抽查了一批学生的视力,将抽查结果绘制成频率分布直方图(如图所示).若在[5.0,5.4]内的学生人数是4,则根据图中数据可得样本数据在[3.8,4.2)内的人数是12.

查看答案和解析>>

同步练习册答案