分析 (1)运用二倍角的余弦公式,化简整理可得cosC=$\frac{1}{2}$,求得C,即可得到所求tanC的值;
(2)运用正弦定理可得b=2a,再由余弦定理c2=a2+b2-2abcosC,解方程即可得到a,b的值.
解答 解:(1)由8sin2$\frac{A+B}{2}$-2cos2C=7,可得
4(1-cos(A+B))-2(2cos2C-1)-7=0,
即为4cosC-4cos2C-1=0,
即有(2cosC-1)2=0,可得cosC=$\frac{1}{2}$,
由0<C<π,可得C=$\frac{π}{3}$,tanC=$\sqrt{3}$;
(2)由正弦定理,可得
sinB=2sinA,即为b=2a,①
由余弦定理可得c2=a2+b2-2abcosC,
即为3=a2+b2-ab,②
将①代入②可得3a2=3,
解得a=1,b=2.
点评 本题考查三角形的正弦定理和余弦定理的运用,同时考查二倍角的余弦公式的运用,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 直角三角形 | B. | 等边三角形 | C. | 钝角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com