精英家教网 > 高中数学 > 题目详情
3.已知(1+x)n=a0+a1x+a2x2+…+anxn,若a0+a1+a2+…+an=16.则自然数n等于(  )
A.6B.5C.4D.3

分析 在二项展开式中取x=1,可得2n=16,由此求得n的值.

解答 解:由(1+x)n=a0+a1x+a2x2+…+anxn
得a0+a1+a2+…+an=2n=16,解得n=4.
故选:C.

点评 本题考查二项式系数的性质,考查了代入法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.从一副52张的扑克牌中任取两张,则这两张牌的花色相同的概率是(  )
A.$\frac{4{C}_{13}^{2}}{{C}_{52}^{2}}$B.$\frac{{C}_{13}^{2}}{{C}_{52}^{2}}$C.$\frac{2}{52}$D.$\frac{13}{52}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.对于任意的实数a,b,用max{a,b}表示a,b中的较大者,如果函数f(x)=max{2x,x2},那么${∫}_{0}^{5}$f(x)dx=$\frac{19}{ln2}$+$\frac{56}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上单调递增,若实数a满足f(2|a-1|)>f(-$\sqrt{2}$),则a的取值范围是(  )
A.(-∞,$\frac{1}{2}$)B.(-∞,$\frac{1}{2}$)∪($\frac{3}{2}$,+∞)C.($\frac{1}{2}$,$\frac{3}{2}$)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某化工厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如表所示:
ABC
483
5510
现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车品乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.
(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(2)问分别生产甲、乙两种肥料,求出此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,且8sin2$\frac{A+B}{2}$-2cos2C=7.
(1)求tanC的值;
(2)若c=$\sqrt{3}$,sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知平面α、β和直线a、b,若α∥β,a?α,b?β,则a、b的位置关系可能为平行或异面.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若f(sinx)=cos2x,则f($\frac{\sqrt{3}}{2}$)等于(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某职业学校有三个年级,共有1000名学生,其中一年级有350名,若从全校学生中任意选出一名学生,则恰好选到二年级学生的概率是0.32,现计划利用分层抽样的方法,从全体学生中选出100名参加座谈会,那么需要从三年级学生中选出33名.

查看答案和解析>>

同步练习册答案