精英家教网 > 高中数学 > 题目详情
13.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.
(Ⅰ)证明:A=2B;
(Ⅱ)若△ABC的面积S=$\frac{a^2}{4}$,求角A的大小.

分析 (Ⅰ)利用正弦定理,结合和角的正弦公式,即可证明A=2B
(Ⅱ)若△ABC的面积S=$\frac{a^2}{4}$,则$\frac{1}{2}$bcsinA=$\frac{a^2}{4}$,结合正弦定理、二倍角公式,即可求角A的大小.

解答 (Ⅰ)证明:∵b+c=2acosB,
∴sinB+sinC=2sinAcosB,
∴sinB+sin(A+B)=2sinAcosB
∴sinB+sinAcosB+cosAsinB=2sinAcosB
∴sinB=sinAcosB-cosAsinB=sin(A-B)
∵A,B是三角形中的角,
∴B=A-B,
∴A=2B;
(Ⅱ)解:∵△ABC的面积S=$\frac{a^2}{4}$,
∴$\frac{1}{2}$bcsinA=$\frac{a^2}{4}$,
∴2bcsinA=a2
∴2sinBsinC=sinA=sin2B,
∴sinC=cosB,
∴B+C=90°,或C=B+90°,
∴A=90°或A=45°.

点评 本题考查了正弦定理,解三角形,考查三角形面积的计算,考查二倍角公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.执行如图的程序框图,若输入n的值为3,则输出的S的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知某炼钢厂车间每年的利润y(万元)与废品率x(%)的一组统计资料如下:
 废品率x1.3  1.5 1.6 1.7 1.9
 利润y 150 120 110 100 70
求y关于x的一元线性回归方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>$\sqrt{3}$)的右焦点为F,右顶点为A,已知$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{3e}{|FA|}$,其中O为原点,e为椭圆的离心率.
(1)求椭圆的方程;
(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,且8sin2$\frac{A+B}{2}$-2cos2C=7.
(1)求tanC的值;
(2)若c=$\sqrt{3}$,sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求函数y=cos(2x+$\frac{π}{4}$)的对称中心,对称轴方程,递减区间和最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax2+2x-1(a<0).
(1)若a=-1,求函数的零点;
(2)若函数在区间(0,1]上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.数列{an}是递增的等差数列,已知a9=5,且a1,a3,a7成等比数列.
(1)求{an}的通项公式;
(2)设bn=$\frac{1}{n{a}_{n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数为偶函数且在区间(0,+∞)上单调递增的是(  )
A.y=$\frac{1}{x}$B.y=-x2+1C.y=lg|x|D.y=3x

查看答案和解析>>

同步练习册答案