精英家教网 > 高中数学 > 题目详情
3.执行如图的程序框图,若输入n的值为3,则输出的S的值为1.

分析 根据程序框图进行模拟计算即可.

解答 解:若输入n的值为3,
则第一次循环,S=0+$\sqrt{2}$-1=$\sqrt{2}$-1,1≥3不成立,
第二次循环,S=$\sqrt{2}$-1+$\sqrt{3}$$-\sqrt{2}$=$\sqrt{3}$-1,2≥3不成立,
第三次循环,S=$\sqrt{3}$-1+$\sqrt{4}$-$\sqrt{3}$=$\sqrt{4}$-1=2-1=1,3≥3成立,
程序终止,输出S=1,
故答案为:1

点评 本题主要考查程序框图的识别和判断,进行模拟运算是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知O为坐标原点,A(3,4),点p(x,y)满足约束条件$\left\{\begin{array}{l}{x+y≤3}\\{x-y-1≤0}\\{x-1≥0}\end{array}\right.$,则|$\overrightarrow{OP}$|cos∠AOP的最大值是$\frac{11}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在一个袋子里装有均匀的12个球,其中红球5个,黑球4个,白球2个,绿球1个,现从中任意取一个球,求:
(1)摸出红球或黑球的概率;
(2)摸出白球或绿球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列{an}满足a1=1,an+1=$\frac{{a}_{n}-\sqrt{3}}{\sqrt{3}{a}_{n}+1}$(n∈N*),则a2013等于(  )
A.1B.-$\sqrt{3}$+2C.-$\sqrt{3}$-2D.$\sqrt{3}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{αn}的前n项和为n2+pn.数列{bn}的前n项和为32n-n2
(1)若α10=b10,求p的值;
(2)取数列{bn}的第1项.第3项.第5项…构成-个新的数列{cn},求数列{cn}的通项公式;
(3)设dn=|cn|.求数列{dn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在如图所示的几何体中,D是AC的中点,EF∥DB.
(Ⅰ)已知AB=BC,AE=EC,求证:AC⊥FB;
(Ⅱ)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设实数x,y满足x2-3xy+y2=1,则x-2y的取值范围是(-∞,-$\frac{2\sqrt{5}}{5}$]∪[$\frac{2\sqrt{5}}{5}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,sinA=$\frac{33}{65}$,cosC=$\frac{4}{5}$.
(1)求cosB的值;
(2)若$\overrightarrow{AB}$•$\overrightarrow{AC}$=56,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.
(Ⅰ)证明:A=2B;
(Ⅱ)若△ABC的面积S=$\frac{a^2}{4}$,求角A的大小.

查看答案和解析>>

同步练习册答案