分析 (Ⅰ)由条件利用等腰三角形的性质,证得BD⊥AC,ED⊥AC,再利用直线和平面垂直的判定定理证得AC⊥平面EFBD,从而证得AC⊥FB.
(Ⅱ)再取CF的中点O,利用直线和平面平行的判定定理证明 OG∥平面ABC,OH∥平面ABC,可得平面OGH∥平面ABC,从而证得GH∥平面ABC.
解答
(Ⅰ)证明:如图所示,∵D是AC的中点,AB=BC,AE=EC,
∴△BAC、△EAC都是等腰三角形,
∴BD⊥AC,ED⊥AC.
∵EF∥DB,∴E、F、B、D四点共面,这样,
AC垂直于平面EFBD内的两条相交直线ED、BD,
∴AC⊥平面EFBD.
显然,FB?平面EFBD,∴AC⊥FB.
(Ⅱ)已知G,H分别是EC和FB的中点,再取CF的中点O,
则OG∥EF,∵OG∥BD,
∴OG∥BD,而BD?平面ABC,∴OG∥平面ABC.
同理,OH∥BC,而BC?平面ABC,∴OH∥平面ABC.
∵OG∩OH=O,∴平面OGH∥平面ABC,∴GH∥平面ABC.
点评 本题主要考查直线和平面垂直的判定和性质,直线和平面平行的判定与性质,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10πcm2 | B. | 100cm2 | C. | 300cm2 | D. | 300πcm2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com