精英家教网 > 高中数学 > 题目详情
18.设函数f(x)=x3+ax2+bx+c.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围;
(3)求证:a2-3b>0是f(x)有三个不同零点的必要而不充分条件.

分析 (1)求出f(x)的导数,求得切线的斜率和切点,进而得到所求切线的方程;
(2)由f(x)=0,可得-c=x3+4x2+4x,由g(x)=x3+4x2+4x,求得导数,单调区间和极值,由-c介于极值之间,解不等式即可得到所求范围;
(3)先证若f(x)有三个不同零点,令f(x)=0,可得单调区间有3个,求出导数,由导数的图象与x轴有两个不同的交点,运用判别式大于0,可得a2-3b>0;再由a=b=4,c=0,可得若a2-3b>0,不能推出f(x)有3个零点.

解答 解:(1)函数f(x)=x3+ax2+bx+c的导数为f′(x)=3x2+2ax+b,
可得y=f(x)在点(0,f(0))处的切线斜率为k=f′(0)=b,
切点为(0,c),可得切线的方程为y=bx+c;
(2)设a=b=4,即有f(x)=x3+4x2+4x+c,
由f(x)=0,可得-c=x3+4x2+4x,
由g(x)=x3+4x2+4x的导数g′(x)=3x2+8x+4=(x+2)(3x+2),
当x>-$\frac{2}{3}$或x<-2时,g′(x)>0,g(x)递增;
当-2<x<-$\frac{2}{3}$时,g′(x)<0,g(x)递减.
即有g(x)在x=-2处取得极大值,且为0;
g(x)在x=-$\frac{2}{3}$处取得极小值,且为-$\frac{32}{27}$.
由函数f(x)有三个不同零点,可得-$\frac{32}{27}$<-c<0,
解得0<c<$\frac{32}{27}$,
则c的取值范围是(0,$\frac{32}{27}$);
(3)证明:若f(x)有三个不同零点,令f(x)=0,
可得f(x)的图象与x轴有三个不同的交点.
即有f(x)有3个单调区间,
即为导数f′(x)=3x2+2ax+b的图象与x轴有两个交点,
可得△>0,即4a2-12b>0,即为a2-3b>0;
若a2-3b>0,即有导数f′(x)=3x2+2ax+b的图象与x轴有两个交点,
当c=0,a=b=4时,满足a2-3b>0,
即有f(x)=x(x+2)2,图象与x轴交于(0,0),(-2,0),则f(x)的零点为2个.
故a2-3b>0是f(x)有三个不同零点的必要而不充分条件.

点评 本题考查导数的运用:求切线的方程和单调区间、极值,考查函数的零点的判断,注意运用导数求得极值,考考查化简整理的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设x,y满足约束条件$\left\{\begin{array}{l}{2x-y+1≥0}\\{x-2y-1≤0}\\{x≤1}\end{array}\right.$,则z=2x+3y-5的最小值为-10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a∈R,则“a>1”是“a2>1”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.由函数y=cosx,x∈[-$\frac{π}{2}$,$\frac{3π}{2}$]的图象得到函数y=sinx,x∈[0,2π]的图象,需向右平移(  )
A.-$\frac{π}{2}$个单位长度B.-π个单位长度C.π个单位长度D.$\frac{π}{2}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知O为坐标原点,A(3,4),点p(x,y)满足约束条件$\left\{\begin{array}{l}{x+y≤3}\\{x-y-1≤0}\\{x-1≥0}\end{array}\right.$,则|$\overrightarrow{OP}$|cos∠AOP的最大值是$\frac{11}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N*
(Ⅰ)若2a2,a3,a2+2成等差数列,求an的通项公式;
(Ⅱ)设双曲线x2-$\frac{{y}^{2}}{{a}_{n}^{2}}$=1的离心率为en,且e2=$\frac{5}{3}$,证明:e1+e2+???+en>$\frac{{4}^{n}-{3}^{n}}{{3}^{n-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是(  )
A.各月的平均最低气温都在0℃以上
B.七月的平均温差比一月的平均温差大
C.三月和十一月的平均最高气温基本相同
D.平均最高气温高于20℃的月份有5个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.为了得到函数y=$\sqrt{3}$sin2x-cos2x的图象,只需把函数y=4sinxcosx的图象向右平移$\frac{π}{12}$个单位.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在如图所示的几何体中,D是AC的中点,EF∥DB.
(Ⅰ)已知AB=BC,AE=EC,求证:AC⊥FB;
(Ⅱ)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC.

查看答案和解析>>

同步练习册答案