精英家教网 > 高中数学 > 题目详情
5.设x,y满足约束条件$\left\{\begin{array}{l}{2x-y+1≥0}\\{x-2y-1≤0}\\{x≤1}\end{array}\right.$,则z=2x+3y-5的最小值为-10.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{2x-y+1≥0}\\{x-2y-1≤0}\\{x≤1}\end{array}\right.$作出可行域如图,
联立$\left\{\begin{array}{l}{2x-y+1=0}\\{x-2y-1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-1}\\{y=-1}\end{array}\right.$,即A(-1,-1).
化目标函数z=2x+3y-5为$y=-\frac{2}{3}x+\frac{z}{3}+\frac{5}{3}$.
由图可知,当直线$y=-\frac{2}{3}x+\frac{z}{3}+\frac{5}{3}$过A时,直线在y轴上的截距最小,z有最小值为2×(-1)+3×(-1)-5=-10.
故答案为:-10.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{|x|,x≤m}\\{{x}^{2}-2mx+4m,x>m}\end{array}\right.$,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{2x+3y-6≥0}\\{3x+2y-9≤0}\end{array}\right.$,则目标函数z=2x+5y的最小值为(  )
A.-4B.6C.10D.17

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=4,<$\overrightarrow{a}$,$\overrightarrow{b}$>=60°,求($\overrightarrow{a}$+2$\overrightarrow{b}$)•($\overrightarrow{a}$-3$\overrightarrow{b}$)=-93.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知点O(0,0),A(-1,2),B(2,4),$\overrightarrow{OP}$=$\overrightarrow{OA}$+t$\overrightarrow{AB}$,当点P在第二象限时,实数t的取值范围是(-1,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码1-7分别对应年份2008-2014.
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:$\sum_{i=1}^{7}$yi=9.32,$\sum_{i=1}^{7}$tiyi=40.17,$\sqrt{\sum_{i=1}^{7}({y}_{i}-\overline{y})^{2}}$=0.55,$\sqrt{7}$≈2.646.
参考公式:相关系数r=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,
回归方程$\widehat{y}$=$\widehat{a}$+$\widehat{b}$t中斜率和截距的最小二乘估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{t}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-1,x≥0}\\{-{2}^{x}+1,x<0}\end{array}\right.$的图象可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.
(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;
(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=x3+ax2+bx+c.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围;
(3)求证:a2-3b>0是f(x)有三个不同零点的必要而不充分条件.

查看答案和解析>>

同步练习册答案