精英家教网 > 高中数学 > 题目详情
12.点O、I、H、G分别为△ABC(非直角三角形)的外心、内心、垂心和重心,给出下列关系式
①$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}$=$\overrightarrow{0}$;
②sin2A•$\overrightarrow{OA}$+sin2B•$\overrightarrow{OB}$+sin2C•$\overrightarrow{OC}$=$\overrightarrow{0}$;
③a$\overrightarrow{IA}$+b$\overrightarrow{IB}$+c$\overrightarrow{IC}$=$\overrightarrow{0}$;
④tanA•$\overrightarrow{HA}$+tanB•$\overrightarrow{HB}$+tanC•$\overrightarrow{HC}$=$\overrightarrow{0}$.
其中一定正确的个数是(  )
A.1B.2C.3D.4

分析 根据三角形(非直角三角形)的外心、内心、垂心和重心的向量表示与运算性质,对选项中的命题逐一进行分析、判断正误即可.

解答 解:对于①,点G是△ABC的重心,如图①所示,

所以$\overrightarrow{AG}$=$\frac{2}{3}$$\overrightarrow{AD}$=$\frac{2}{3}$×$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
同理$\overrightarrow{BG}$=$\frac{1}{3}$($\overrightarrow{BA}$+$\overrightarrow{BC}$),$\overrightarrow{CG}$=$\frac{1}{3}$($\overrightarrow{CB}$+$\overrightarrow{CA}$),
∴$\overrightarrow{AG}$+$\overrightarrow{BG}$+$\overrightarrow{CG}$=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$+$\overrightarrow{BA}$+$\overrightarrow{BC}$+$\overrightarrow{CB}$+$\overrightarrow{CA}$)=$\overrightarrow{0}$,
所以$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}$=$\overrightarrow{0}$,命题正确;
对于②,点O是△ABC的外心,如图②所示,

OA=OB=OC,
所以S△BOC:S△AOC:S△AOB═sin∠BOC:sin∠AOC:sin∠AOB=sin2A:sin2B:sin2C,
所以sin2A•$\overrightarrow{OA}$+sin2B•$\overrightarrow{OB}$+sin2C•$\overrightarrow{OC}$=$\overrightarrow{0}$,命题正确;
对于③,点I是△ABC的内心,如图所示,

所以S△BIC:S△AIC:S△AIB=a:b:c,所以a$\overrightarrow{IA}$+b$\overrightarrow{IB}$+c$\overrightarrow{IC}$=$\overrightarrow{0}$,命题正确;
对于④,点H是△ABC(非直角三角形)的垂心,如图所示,

所以S△BHC:S△AHC:S△ANB=tanA:tanB:tanC,
所以tanA•$\overrightarrow{HA}$+tanB•$\overrightarrow{HB}$+tanC•$\overrightarrow{HC}$=$\overrightarrow{0}$,命题正确.
综上,以上正确的命题有4个.
故选:D.

点评 本题考查了非直角三角形的外心、内心、垂心和重心的向量表示与性质的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.(1)分别写出下列函数:y=log2x,x∈[$\frac{1}{2}$,4],y=cosx,x∈[-$\frac{π}{3}$,$\frac{π}{2}$]的最小值和最大值;
(2)设函数y=f(x)的定义域为D,最小值为m,最大值为M,若m∈D且M∈D,则称y=f(x),x∈D为“B函数”;
①从第(1)小题给出的两个函数中,选出“B函数”;
②若f(x)=$\frac{1}{2}$x2-x+$\frac{3}{2}$,x∈[1,b]为“B函数”,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在平面直角坐标系xOy中,点M的坐标是(-1,$\sqrt{3}$).以O为极点,x轴的正半轴为极轴建立极坐标系,则M的极坐标为(  )
A.(2,$-\frac{2π}{3}$)B.(2,$-\frac{π}{3}$)C.(2,$\frac{π}{3}$)D.(2,$\frac{2π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=xlnx,g(x)=$\frac{x}{{e}^{x}}$.
(1)记F(x)=f(x)-g(x),求证:F(x)=0在区间(1,+∞)内有且仅有一个实根;
(2)用min{a,b}表示a,b中的最小值,设函数m(x)=min{f(x),g(x)},若方程m(x)=c在(1,+∞)有两个不相等的实根x1,x2(x1<x2),记F(x)=0在(1,+∞)内的实根x0
求证:$\frac{{x}_{1}+{x}_{2}}{2}$>x0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一颗骰子的六个面上分别标有数字1、2、3、4、5、6,若以连续掷两次骰子分别得到的点数m、n作为P点坐标,则点P落在圆x2+y2=16内的概率为(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{1}{3}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如果方程(lgx)2+lg6•lgx+lg2•lg3=0的两根为x1,x2,则x1x2的值为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x-a|+2a(a为实常数).
(1)若不等式f(x)≤3的解集为{x|-6≤x≤4},求a的值;
(2)若函数g(x)=f(x+a)-2a,当a=3且3<m<6时,解关于x的不等式f(x)-g(x)≥m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四边形ADBC是圆内接四边形,∠CAB=∠ADC.延长DA到E使BD=AE,连结EC.
(1)求证:CE=CD;
(2)若AC⊥BC,CD=1,求AD+BD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,正方体AC1中,已知O为AC与BD的交点,M为DD1的中点.
(1)求异面直线B1O与AM所成角的大小.
(2)求二面角B1-MA-C的正切值.

查看答案和解析>>

同步练习册答案