精英家教网 > 高中数学 > 题目详情
13.如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及延长线分别交AC,BC于点G,F.
(1)求证:DF垂直且平分AC;
(2)求证:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半径.

分析 (1)由DE是⊙O的切线,且DF过圆心O,可得DF⊥DE,又由AC∥DE,则DF⊥AC,进而可知DF垂直平分AC;
(2)可先证△AGD≌△CGF,四边形ACED是平行四边形,即可证明FC=CE;
(3)连接AO可先求得AG=4cm,在Rt△AGD中,由勾股定理得GD=3cm;设圆的半径为r,则AO=r,OG=r-3,在Rt△AOG中,由勾股定理可求得r.

解答 (1)证明:∵DE是⊙O的切线,且DF过圆心O,
∴DF是⊙O的直径所在的直线,
∴DF⊥DE,
又∵AC∥DE,
∴DF⊥AC,
∴G为AC的中点,即DF平分AC,则DF垂直平分AC;(2分)
(2)证明:由(1)知:AG=GC,
又∵AD∥BC,
∴∠DAG=∠FCG;
又∵∠AGD=∠CGF,
∴△AGD≌△CGF(ASA),(4分)
∴AD=FC;
∵AD∥BC且AC∥DE,
∴四边形ACED是平行四边形,
∴AD=CE,
∴FC=CE;(5分)
(3)解:连接AO,
∵AG=GC,AC=8cm,
∴AG=4cm;
在Rt△AGD中,由勾股定理得GD2=AD2-AG2=52-42=9,
∴GD=3;(6分)
设圆的半径为r,则AO=r,OG=r-3,
在Rt△AOG中,由勾股定理得AO2=OG2+AG2
有:r2=(r-3)2+42
解得r=$\frac{25}{6}$,(8分)
∴⊙O的半径为$\frac{25}{6}$cm.(10分)

点评 本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.三个数a,b,c成等比数列,且a+b+c=3,则b的取值范围是[-3,0)∪(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图所示,则这个棱柱的表面积为$72+18\sqrt{3}$.则这个棱柱体积为36$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.20世纪30年代,科学家里克特制定了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级M,其计算公式为M=lgA-lgA0.其中,A是被测地震的最大振幅,A0是“标准地震”的振幅(A0为一定值).已知甲地发生里氏5级地震,几年后,乙地也发生了地震,测震仪测得乙地地震的最大振幅是甲地地震的最大振幅的100倍,那么乙地发生的地震是里氏7级地震.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达3.32亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为0.4.
网购金额
(单位:元)
频数频率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.30
(2500,3000]yq
合计1001.00
(Ⅰ)确定x,y,p,q的值,并补全频率分布直方图;
(Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.
①请将列联表补充完整;
网龄3年以上网龄不足3年合计
购物金额在2000元以上35
购物金额在2000元以下20
合计100
②并据此列联表判断,能否在犯错误的概率不超过0.01的前提下,认为网购金额超过2000元与网龄在三年以上有关?
参考数据:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:${{K}^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为了了解中学生的身体发育情况,对某一中学的50名男生进行了身高测量(单位:cm),结果如下:
175 168 170 176 167 181 162 173 171 177 179 172 165 
157 172 173 166 177 169 181 160 163 166 177 175 174
173 174 171 171 158 170 165 175 165 174 169 163 166  
166 174 172 166 172 175 161 173 167
(1)列出样本的频率分布表,画出频率分布直方图;
(2)计算样本平均数和标准差;
(3)由样本数据估计总体中有多少数据落在区间($\overline{x}$-s,$\overrightarrow{x}$+s)内.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知二次函数f(x)=ax2+bx+3是偶函数,且过点(2,7),g(x)=x+4且F(x)=f(2x)+g(2x+1
(1)求F(x)的值域;
(2)是否对任意x∈R,都有$\frac{mx+m+4}{f(x)}<1$成立?若成立,求出m的范围;若不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个质点从原点出发,每秒末必须向右、或向左、或向上、或向下跳一个单位长度.则此质点在第8秒末到达点P(4,2)的跳法共有(  )
A.98B.448C.1736D.196

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.给定下列四个命题:
(1)任何一个平面图形就是一个平面;
(2)平面的形状是平行四边形;
(3)三角形、圆、平行四边形都可以表示平面;
(4)3个平面重叠起来,比2个平面重叠起来厚;
(5)一个平面的长是200cm,宽是100cm;
(6)一个平面被另一个平面遮住时,被遮部分的线段应画成虚线或不画,
则其中正确的命题有2个.

查看答案和解析>>

同步练习册答案