精英家教网 > 高中数学 > 题目详情
1.一个质点从原点出发,每秒末必须向右、或向左、或向上、或向下跳一个单位长度.则此质点在第8秒末到达点P(4,2)的跳法共有(  )
A.98B.448C.1736D.196

分析 由题意跳动8次从原点O到P(4,2),可以分为2类,第一类,向右跳了4次,向上跳了3次,向下跳了1次,第二类,向右跳5次,向上跳了2次,向左跳了1次,根据分类计数原理即可得到答案.

解答 解:可分二种情况来解.
第一类,向右跳了4次,向上跳了3次,向下跳了1次,故有C84C43=280种,
第二类,向右跳5次,向上跳了2次,向左跳了1次,故有C85C32=168种,
根据分类计数原理,共有280+168=448,
故选:B.

点评 本题考查了分类计数计数原理,关键是分类,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知幂函数f(x)=xa的图象经过点($\root{3}{2}$,2),则函数f(x)的解析式为f(x)=x3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及延长线分别交AC,BC于点G,F.
(1)求证:DF垂直且平分AC;
(2)求证:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知向量$\overrightarrow a$=(3,1),$\overrightarrow b$=(1,3),$\overrightarrow c$=(k,2),当$\overrightarrow b$∥$\overrightarrow c$时,k=$\frac{2}{3}$;当($\overrightarrow a$-$\overrightarrow c$)⊥$\overrightarrow b$,则k=0.

查看答案和解析>>

科目:高中数学 来源:2017届湖北襄阳四中高三七月周考三数学(文)试卷(解析版) 题型:解答题

已知

(1)若存在使得≥0成立,求的范围;

(2)求证:当>1时,在(1)的条件下,成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{2}{\sqrt{(1-{m}^{2}){x}^{2}+3(1-m)x+6}}$,解答下列问题:
①若m=1时,试求函数f(x)的定义域与值域;
②若f(x)的定义域为R,求实数m的取值范围;
③若f(x)的定义域为(-2,1),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.对于任意实数a,b,定义max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}\right.$,已知在[-2,2]上的偶函数f(x)满足当0≤x≤2时,f(x)=max{2x-1,2-x}若方程f(x)-mx+1=0恰有两个根,则m的取值范围是(  )
A.[-2,-eln2)∪(eln2,2]B.[-eln2,0)∪(0,eln2]C.[-2,0)∪(0,2]D.[-e,-2)∪(2,e]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=3cos(x-10°)-5sin(x-40°)的最大值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=2x+1的值域为(1,+∞),函数y=$\frac{1}{{2}^{x}-1}$的值域为(-∞,-1)∪(0,+∞).

查看答案和解析>>

同步练习册答案