精英家教网 > 高中数学 > 题目详情

【题目】空气质量指数PM2.5(单位:)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:

PM2.5

日均浓度

0~35

35~75

75~115

115~150

150~250

空气质量级别

一级

二级

三级

四级

五级

六级

空气质量类型

轻度污染

中度污染

重度污染

严重污染

甲乙两城市20205月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:

1)根据你所学的统计知识估计甲乙两城市15天内哪个城市空气质量总体较好?并简要说明理由.

2)在15天内任取1天,估计甲乙两城市空气质量类别均为优或良的概率;

3)在乙城市15个监测数据中任取2个,设为空气质量类别为优或良的天数,求的分布列及数学期望.

【答案】1)甲城市空气质量总体较好,理由见解析;(2;(3)分布列见解析,数学期望:.

【解析】

1)直接由茎叶图可得结果.

2)由(1)的分析及相互独立事件的概率计算公式即可得出;

3)利用超几何分布即可得到分布列,再利用数学期望的计算公式即可得出.

1)由茎叶图可知:甲城市空气质量一级和二级共有10天,而乙城市空气质量一级和二级只有5天,因此甲城市空气质量总体较好.

2)甲城市在15天内空气质量类别为优或良的共有10天,任取1天,空气质量类别为优或良的概率为

乙城市在15天内空气质量类别为优或良的共有5天,任取1天,空气质量类别为优或良的概率为

15天内任取1天,估计甲乙两城市空气质量类别均为优或良的概率为.

3的取值为012

.

的分布列为:

0

1

2

数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为为参数),直线,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.

1)求直线l和曲线C的极坐标方程;

2)若直线与直线l相交于点A,与曲线C相交于不同的两点MN.的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个顶点为,右焦点为,且,其中为原点.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知点满足,点在椭圆上(异于椭圆的顶点),直线与以为圆心的圆相切于点,且为线段的中点.求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程是为参数),以原点为极点,以轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为.

)求直线的普通方程和曲线的直角坐标方程;

)过原点的直线与直线交于点,与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某口罩厂一年中各月份的收入、支出情况如图所示(单位:万元,下列说法中错误的是(注:月结余=月收入一月支出)( )

A.上半年的平均月收入为45万元B.月收入的方差大于月支出的方差

C.月收入的中位数为70D.月结余的众数为30

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 的左、右焦点分别为 为坐标原点, 是双曲线上在第一象限内的点,直线分别交双曲线左、右支于另一点 ,且,则双曲线的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网络购物已经成为人们的一种生活方式.某购物平台为了给顾客提供更好的购物体验,为入驻商家设置了积分制度,每笔购物完成后,买家可以根据物流情况、商品质量等因素对商家做出评价,评价分为好评、中评和差评平台规定商家有50天的试营业时间,期间只评价不积分,正式营业后,每个好评给商家计1分,中评计0分,差评计分,某商家在试营业期间随机抽取100单交易调查了其商品的物流情况以及买家的评价情况,分别制成了图1和图2

1)通常收件时间不超过四天认为是物流迅速,否则认为是物流迟缓;

请根据题目所给信息完成下面列联表,并判断能否有的把握认为获得好评与物流速度有关?

好评

中评或差评

合计

物流迅速

物流迟缓

30

合计

2)从正式营业开始,记商家在每笔交易中得到的评价得分为.该商家将试营业50天期间的成交情况制成了频数分布表(表1),以试营业期间成交单数的频率代替正式营业时成交单数发生的概率.

1

成交单数

36

30

27

天数

10

20

20

(Ⅰ)求的分布列和数学期望;

(Ⅱ)平台规定,当积分超过10000分时,商家会获得诚信商家称号,请估计该商家从正式营业开始,1年内(365天)能否获得诚信商家称号

附:

参考数据:

0.150

0100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在四棱锥中,底面是边长为的正方形,是正三角形,CD平面PADE,F,G,O分别是PC,PD,BC,AD 的中点.

(Ⅰ)求证:PO平面

(Ⅱ)求平面EFG与平面所成锐二面角的大小;

(Ⅲ)线段上是否存在点,使得直线与平面所成角为,若存在,求线段的长度;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥中,底面是矩形,.

1)求证:平面平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案