精英家教网 > 高中数学 > 题目详情
设函数f(x)=loga(ax).(1)判断函数f(x)的奇偶性;
(2)判断函数f(x)在(0,+∞)的单调性并证明.
(1)由已知f(x)的定义域为R……1分,所以f(-x)=loga(ax)=f(x),故f(x)为偶函数………4分.
(2)设h(x)=ax,当a>1时,令x1x2>0,故h(x1)>h(x2),logah(x1)>logah(x2),即f(x1)>f(x2),当a>1时,f(x)在(0,+∞)上是增函数…………10分.
同理可证当0<a<1时,f(x)在(0,+∞)上是减函数
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知定义域为的函数是奇函数.
(1)求的值;
(2)若对任意的,不等式恒成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,若为奇函数,则_________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的偶函数满足:对任意的,有,则当时,有
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则不等式的解集为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在上的奇函数,当时,
,那么当时,的解析式为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是定义在上的奇函数,当时,,那么的值是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是定义在R上的奇函数,当时,,则 ______。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数f (x)=+a是奇函数,则实数a的值为 (  ).
A.B.-C.2D.-2

查看答案和解析>>

同步练习册答案