【题目】函数f(x)=sin(wx+
)(w>0,
<
)的最小正周期是π,若将该函数的图象向右平移
个单位后得到的函数图象关于直线x=
对称,则函数f(x)的解析式为( )
A.f(x)=sin(2x+
)B.f(x)=sin(2x-
)
C.f(x)=sin(2x+
)D.f(x)=sin(2x-
)
科目:高中数学 来源: 题型:
【题目】已知椭圆
,过原点O且斜率不为0的直线与椭圆C交于P,Q两点.
(1)若
为椭圆C的一个焦点,求椭圆C的标准方程;
(2)若经过椭圆C的右焦点的直线l与椭圆C交于A,B两点,四边形OAPB能否为平行四边形?若能,求此时直线OP的方程,若不能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
为常数,
…是自然对数的底数),曲线
在点
处的切线与
轴平行.
(1)求
的值;
(2)求函数
的单调区间;
(3)设
,其中
为
的导函数.证明:对任意
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校共有教职工900人,分成三个批次进行继续教育培训,在三个批次中男、女教职工人数如下表所示. 已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16 .
![]()
(1)求
的值;
(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查, 问应在第三批次中抽取教职工多少名?
(3)已知
,求第三批次中女教职工比男教职工多的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB//CD,∠ABD=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.
(Ⅰ)求证:平面ADE⊥平面BDEF;
(Ⅱ)若二面角C
BF
D的大小为60°,求CF与平面ABCD所成角的正弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中国诗词大会》亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.因为前四场播出后反响很好,所以节目组决定《将进酒》、《山居秋暝》、《望岳》、《送杜少府之任蜀州》和另外确定的两首诗词排在后六场,并要求《将进酒》与《望岳》相邻,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻,且均不排在最后,则后六场开场诗词的排法有( )
A. 144种 B. 48种 C. 36种 D. 72种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】曲线
的极坐标方程为
(常数
),曲线
的参数方程为
(
为参数).
(1)求曲线
的直角坐标方程和
的普通方程;
(2)若曲线
,
有两个不同的公共点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线
是由两个定点
和点
的距离之积等于
的所有点组成的,对于曲线
,有下列四个结论:①曲线
是轴对称图形;②曲线
上所有的点都在单位圆
内;③曲线
是中心对称图形;④曲线
上所有点的纵坐标
.其中,所有正确结论的序号是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com