精英家教网 > 高中数学 > 题目详情

【题目】已知函数为常数,是自然对数的底数),曲线在点处的切线与轴平行.

1)求的值;

2)求函数的单调区间;

3)设,其中的导函数.证明:对任意

【答案】12的单调递增区间为,单调递减区间为3)见解析

【解析】

1)先求导得,由曲线在点处的切线与轴平行可得,求得

2)由(1)得,当时,;当时,,由此判断函数的增减性;

3,可结合(2)中求导,得,又,所以满足,进而得证

解:(1)由,得

由于曲线在点处的切线与轴平行.所以,因此

2)由(1)得,令

时,;当时,

,所以时,时,

因此的单调递增区间为,单调递减区间为

3)因为,所以

由(2)得,求导得

所以当时,,函数单调递增;

时,,函数单调递减.

所以当时,.又当时,

所以当时,,即.综上所述结论成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中

)求的单调区间;

)若在上存在,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第十三届全国人大常委会第十一次会议审议的《固体废物污染环境防治法(修订草案)》中,提出推行生活垃圾分类制度,这是生活垃圾分类首次被纳入国家立法中.为了解某城市居民的垃圾分类意识与政府相关法规宣传普及的关系,对某试点社区抽取户居民进行调查,得到如下的列联表.

分类意识强

分类意识弱

合计

试点后

试点前

合计

已知在抽取的户居民中随机抽取户,抽到分类意识强的概率为

1)请将上面的列联表补充完整,并判断是否有的把握认为居民分类意识的强弱与政府宣传普及工作有关?说明你的理由;

2)已知在试点前分类意识强的户居民中,有户自觉垃圾分类在年以上,现在从试点前分类意识强的户居民中,随机选出户进行自觉垃圾分类年限的调查,记选出自觉垃圾分类年限在年以上的户数为,求分布列及数学期望.

参考公式:,其中

下面的临界值表仅供参考

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车站每天均有3辆开往省城的分为上、中、下等级的客车,某天袁先生准备在该汽车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.则他乘上上等车的概率为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(为参数).为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.

1)求曲线的普通方程和极坐标方程;

2)设直线与曲线交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形的中点,将沿直线翻折成,连接的中点,则在翻折过程中,下列说法中所有正确的是(

A.存在某个位置,使得B.翻折过程中,的长是定值

C.,则D.,当三棱锥的体积最大时,三棱锥的外接球的表面积是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=sin(wx+)(w>0,)的最小正周期是π,若将该函数的图象向右平移个单位后得到的函数图象关于直线x=对称,则函数f(x)的解析式为(

A.f(x)=sin(2x+)B.f(x)=sin(2x-)

C.f(x)=sin(2x+)D.f(x)=sin(2x-)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在四棱锥中,中点,平面平面

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案