精英家教网 > 高中数学 > 题目详情
4.${∫}_{0}^{2}$1dx=2.${∫}_{0}^{2}$($\frac{1}{2}$x+1)dx=3.

分析 分别求出被积函数的原函数,计算求值即可.

解答 解:${∫}_{0}^{2}$1dx=x|${\;}_{0}^{2}$=2;${∫}_{0}^{2}$($\frac{1}{2}$x+1)dx=$(\frac{1}{4}{x}^{2}+x){|}_{0}^{2}$=3;
故答案为:2;3;

点评 本题考查了定积分的计算;正确求出被积函数的原函数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.如图,正方形ABCD-A1B1C1D1的棱长为3,在面对角线A1D上取点M,在面对角线C1D上取点N,使得MN∥平面AA1C1C,当线段MN长度取到最小值时,三棱锥A1-MND1的体积为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.运行如图所示的程序框图,输出的n等于(  )
A.27B.28C.29D.30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.数列{an}满足an+an+1=n-1,则该数列的前2016项和为(  )
A.1008×1009B.1007×1008C.1005×1004D.1006×1005

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若实数x,y满足不等式组$\left\{{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y≥0}\end{array}}\right.$,目标函数t=x-2y的最大值为(  )
A.-4B.4C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x-a|.
(1)若f(x)<2的解集是(1,5),求a的值;
(2)当a=1时,求不等式f(x)≥4-|x-4|的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}的前n项和记为Sn,a1=t,an+1=2Sn+1,n∈N*
(Ⅰ)当实数t为何值时,数列{an}是等比数列?
(Ⅱ)在(Ⅰ)的结论下,设bn=log3an+1:Tn是数列 {$\frac{1}{{b}_{n}•{b}_{n+1}}$} 前n项和,求T2011的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=lnx-2x的单调递增区间是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{2,x>0}\\{0,x≤0}\end{array}\right.$,则不等式2-x≥(2x-1)f(x)的解集为(-∞,1].

查看答案和解析>>

同步练习册答案