精英家教网 > 高中数学 > 题目详情

有一个正四面体,它的棱长为a,现用一张圆型的包装纸将其完全包住(不能裁剪纸,但可以折叠),那么包装纸的最小半径为         

解析试题分析:本题转化为四面体的侧面展开问题.在解答时,首先要将四面体的三个侧面沿底面展开,观察展开的图形易知包装纸的对角线处在什么位置时,包装纸面积最小,进而获得问题的解答.
由题意,将正四面体沿底面将侧面都展开,如图所示:
设底面正三角形的中心为O,不难得到当以SO为圆的半径时,
所需包装纸的半径最小,
此时SO==
故答案为:

考点:球内接多面体;棱锥的结构特征;球的体积和表面积
点评:本题考查的是棱锥的结构特征、四面体的侧面展开问题.在解答的过程当中充分体现了侧面展开的处理问题方法、图形的观察和分析能力以及问题转化的思想.值得同学们体会反思.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

将边长为2,锐角为的菱形沿较短对角线折成二面角,点分别为的中点,给出下列四个命题:
①;②与异面直线、都垂直;③当二面角是直二面角时,=;④垂直于截面.
其中正确的是              (将正确命题的序号全填上).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

下列命题中正确的是              .(填上你认为所有正确的选项)
①空间中三个平面,若,则
②若为三条两两异面的直线,则存在无数条直线与都相交;
③球与棱长为正四面体各面都相切,则该球的表面积为
④三棱锥中,.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

是三条不同的直线, 是三个不同的平面,
①若都垂直,则    
②若,则
③若,则   
④若与平面所成的角相等,则
上述命题中的真命题是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,在三棱锥中,,且平面,过作截面分别交,且二面角的大小为,则截面面积的最小值为      .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知m、n为两条不同的直线,为两个不同的平面,下列四个命题中,其中正确的命题是    .(填写正确命题的序号)
;②若
;④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

是两条不同的直线,是两个不同的平面,则下列正确命题的序号
     
①.若  , 则   ;      ②.若,则   
③. 若  ,则   ;      ④.若   ,,则  

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如右图已知每条棱长都为3的四棱柱ABCD-ABCD中,底面是菱形,BAD=60°,D B⊥平面ABCD,长为2的线段MN的一个端点M在DD上运动,另一个端点N在底面ABCD上运动,则MN中点P的轨迹与此四棱柱的面所围成的几何体的体积为 _____________

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

正四面体S—ABC中,E为SA的中点,F为的中心,则直线EF与平面ABC所成的角的正切值是                 

查看答案和解析>>

同步练习册答案