精英家教网 > 高中数学 > 题目详情
9.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里有一个题目:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步,欲知为田几何.”这道题讲的是有一个三角形沙田,三边分别为13里,14里,15里,假设1里按500米计算,则该沙田的面积为21平万千米.

分析 由题意画出图象,并求出AB、BC、AC的长,由余弦定理求出cosB,由平方关系求出sinB的值,代入三角形的面积公式求出该沙田的面积.

解答 解:由题意画出图象:
且AB=13里=6500米,BC=14里=7000米,
AC=15里=7500米,
在△ABC中,由余弦定理得,
cosB=$\frac{A{B}^{2}+B{C}^{2}-A{C}^{2}}{2AB•BC}$=$\frac{1{3}^{2}+1{4}^{2}-1{5}^{2}}{2×13×14}$=$\frac{5}{13}$,
所以sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{12}{13}$,
则该沙田的面积:即△ABC的面积S=$\frac{1}{2}AB•BC•sinB$
=$\frac{1}{2}×6500×7000×\frac{12}{13}$ 
=21000000(平方米)=21(平方千米),
故答案为:21.

点评 本题考查了余弦定理,以及三角形面积公式的实际应用,注意单位的转换,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.有以下命题:①如果向量$\overrightarrow{a}$,$\overrightarrow{b}$与任何向量不能构成空间向量的一组基底,那么$\overrightarrow{a}$,$\overrightarrow{b}$的关系是不共线;②O,A,B,C为空间四点,且向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$不构成空间的一个基底,那么点O,A,B,C一定共面;③已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是空间的一个基底,则向量$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{c}$,也是空间的一个基底.其中正确的命题是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ$<\frac{π}{2})$的图象过点$P(\frac{π}{3},0)$,图象上与点P最近的一个顶点是$Q(\frac{7π}{12},-1)$.
(I)求函数的解析式;并用“五点法”在给定的坐标系内作出函数f(x)一个周期的简图;
(II)求函数f(x)的增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如果a>b,那么下列不等式:①a3>b3;②$\frac{1}{a}$<$\frac{1}{b}$;③3a>3b;④lga>lgb.其中恒成立的是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知二次函数y=f(x)的图象过点(1,-1)(3,3)(-2,8),求f(x)的解析式;
(2)求函数f(x)=$\frac{2-x}{1+x}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数$\frac{2-ai}{i}=1+bi$,其中a,b∈R,i是虚数单位,则|a+bi|=(  )
A.-1-3iB.$\sqrt{5}$C.10D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设f(x)是定义在(0,+∞)上的函数,对定义域内的任意x,y都满足f(xy)=f(x)+f(y),且x>1时,f(x)>0.
(1)判断f(x)在(0,+∞)上的单调性并证明;
(2)若f(2)=1,解不等式f(x)+f(x-3)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=me2x+nex,(m,n∈R),g(x)=x.
(1)当n=4时,若F(x)=f(x)-g(x)存在单调递增区间,求m的取值范围;
(2)当m>0时,设f(x)图象C1与g(x)图象C2相交于不同两点M,N,过线段MN的中点P作x轴的垂线交C1于点Q(x0,y0),若记f′(x)为f(x)导数,求证:f′(x0)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.“a>1”是“函数f(x)=(a2x在定义域内是增函数”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案