精英家教网 > 高中数学 > 题目详情
17.如果a>b,那么下列不等式:①a3>b3;②$\frac{1}{a}$<$\frac{1}{b}$;③3a>3b;④lga>lgb.其中恒成立的是①③.

分析 根据指数函数,对数函数的图象和性质,不等式的基本性质,逐一分析四个结论的真假,可得答案.

解答 解:若a>b,
则:①a3>b3恒成立;
②$\frac{1}{a}$<$\frac{1}{b}$在a,b异号时不成立;
③3a>3b恒成立;
④lga>lgb在a,b存在非正数时不成立,
故答案为:①③

点评 本题以命题的真假判断与应用为载体,考查了不等式的基本性质,指数函数,对数函数的图象和性质等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知集合M={x|(x+2)(x-2)>0},N={-3,-2,2,3,4},则M∩N=(  )
A.{3,4}B.{-3,3,4}C.{-2,3,4}D.{-3,-2,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在空间直角坐标系中,已知点A(1,0,2),B(1,-4,0),点M是A,B的中点,则点M的坐标是(  )
A.(1,-1,0)B.(1,-2,1)C.(2,-4,2)D.(1,-4,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$C:\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$满足条件:(1)焦点为F1(-5,0),F2(5,0);(2)离心率为$\frac{5}{3}$,求得双曲线C的方程为f(x,y)=0.若去掉条件(2),另加一个条件求得双曲线C的方程仍为f(x,y)=0,则下列四个条件中,①双曲线$C:\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$上的任意点P都满足||PF1|-|PF2||=6;②双曲线$C:\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$的虚轴长为4;③双曲线$C:\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$的一个顶点与抛物线y2=6x的焦点重合;④双曲线$C:\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$的渐近线方程为3x+4y=0.符合添加的条件共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知复数z=(a2-4)+(a+2)i(a∈R),则“a=2”是“z为纯虚数”的(  )
A.充分不必要条件B.必要不充分条件
C.既不充分也不必要条件D.充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.f(x)是定义在(-2,2)上的减函数,若f (m-1)>f(2m-1),则实数m的取值范围是(  )
A.(0,+∞)B.(0,$\frac{3}{2}$)C.(-1,3)D.($-\frac{1}{2}$,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里有一个题目:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步,欲知为田几何.”这道题讲的是有一个三角形沙田,三边分别为13里,14里,15里,假设1里按500米计算,则该沙田的面积为21平万千米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-a|+2|x+1|.
(1)当a=3时,求不等式f(x)≥6的解集;
(2)若f(x)≥4对于任意x∈R都恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若f(x)=$\frac{3x}{x-4}$+$\sqrt{x+2}$的定义域为[-2,4)∪(4,+∞).

查看答案和解析>>

同步练习册答案