精英家教网 > 高中数学 > 题目详情
12.若f(x)=$\frac{3x}{x-4}$+$\sqrt{x+2}$的定义域为[-2,4)∪(4,+∞).

分析 由根式内部的代数式大于等于0,分式的分母不为0联立不等式组得答案.

解答 解:由$\left\{\begin{array}{l}{x-4≠0}\\{x+2≥0}\end{array}\right.$,解得x≥-2且x≠4.
∴函数f(x)=$\frac{3x}{x-4}$+$\sqrt{x+2}$的定义域为[-2,4)∪(4,+∞).
故答案为:[-2,4)∪(4,+∞).

点评 本题考查函数的定义域及其求法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.如果a>b,那么下列不等式:①a3>b3;②$\frac{1}{a}$<$\frac{1}{b}$;③3a>3b;④lga>lgb.其中恒成立的是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=me2x+nex,(m,n∈R),g(x)=x.
(1)当n=4时,若F(x)=f(x)-g(x)存在单调递增区间,求m的取值范围;
(2)当m>0时,设f(x)图象C1与g(x)图象C2相交于不同两点M,N,过线段MN的中点P作x轴的垂线交C1于点Q(x0,y0),若记f′(x)为f(x)导数,求证:f′(x0)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数f(x)=$\frac{1-x}{ax}$+lnx是[1,+∞)上的增函数.
(Ⅰ)求正实数a的取值范围;
(Ⅱ)若函数g(x)=x2+2x,在使g(x)≥M对定义域内的任意x值恒成立的所有常数M中,我们把M的最大值M=-1叫做f(x)=x2+2x的下确界,若函数f(x)=$\frac{1-x}{ax}$+lnx的定义域为[1,+∞),根据所给函数g(x)的下确界的定义,求出当a=1时函数f(x)的下确界.
(Ⅲ)设b>0,a>1,求证:ln$\frac{a+b}{b}$>$\frac{1}{a+b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若一系列的函数解析式相同、值域相同,但定义域不同,则称这些函数为“同型异构”函数.那么函数解析式为y=-x2,x∈R,值域为{-1,-9}的“同型异构”函数有(  )
A.10个B.9个C.8个D.7个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.抛物线x=-8y2的焦点坐标是(  )
A.(-$\frac{1}{32}$,0)B.(-2,0)C.($\frac{1}{32}$,0)D.(0,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.“a>1”是“函数f(x)=(a2x在定义域内是增函数”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知双曲线C的方程为x2-15y2=15.其渐近线方程为y=±$\frac{\sqrt{15}}{15}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=aex-1-$\sqrt{x}$+1的图象在点(1,f(1))处的切线斜率为$\frac{5}{2}$,则实数a=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.3D.-3

查看答案和解析>>

同步练习册答案