分析 (1)用定义法证明f(x)在(0,+∞)上的单调性;
(2)求出f(4)=2,不等式f(x)+f(x-3)≤2转化为f[x(x-3)]≤f(4)求解,注意定义域.
解答 解:(1)f(x)在(0,+∞)上是单调递增.
证明:任取x1,x2∈(0,+∞)且x1<x2,$\frac{x_2}{{x{\;}_1}}>1$
则$f({x_2})-f({x_1})=f(x{\;}_1•\frac{x_2}{x_1})-f(x{\;}_1)=f({x_1})+f(\frac{x_2}{x_1})-f(x{\;}_1)$=$f(\frac{x_2}{x_1})$
∵x>1时f(x)>0∴$f(\frac{x_2}{x_1})$>0即f(x2)>f(x1)
∴f(x)在(0,+∞)上是单调递增的.
(2)2=1+1=f(2)+f(2)=f(4),
f(x)+f(x-3)=f[x(x-3)],f(x)+f(x-3)≤2,
即f[x(x-3)]≤f(4)∵f(x)在(0,+∞)上是单调递增的,
∴$\left\{\begin{array}{l}x(x-3)≤4\\ x>0\\ x-3>0\end{array}\right.$⇒3<x≤4,∴不等式f(x)+f(x-3)≤2的解集为{x|3<x≤4}.
点评 本题考查了,抽象函数的单调性证明及函数不等式的解法,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 有最小值-$\frac{3}{4}$,无最大值 | B. | 有最小值$\frac{3}{4}$,最大值1 | ||
| C. | 有最小值1,最大值$\frac{19}{4}$ | D. | 无最小值和最大值 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 既不充分也不必要条件 | D. | 充要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 3 | C. | 5 | D. | 无法确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2或$\frac{5}{2}$ | B. | ±2 | C. | 2 | D. | -2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com