精英家教网 > 高中数学 > 题目详情
已知四棱椎的底面是边长为6 的正方形,侧棱底面,且,则该四棱椎的体积是    ▲   .
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,点D是AB的中点.

(1)求证:AC⊥BC1;
(2)求的体积;
(3)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在多面体中,四边形是正方形,平面,点的中点.

⑴求证:平面
⑵求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在正四棱柱ABCD—A1B1C1D1中,AB=1,AA1=2,E为棱AA1上一点,且平面BDE。

  (I)求直线BD1与平面BDE所成角的正弦值;
(II)求二面角C—BE—D的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(文科做)(本题满分14分)如图,在长方体
ABCDA1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1EA1D;
(2)当EAB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1ECD的大小为.                      

(理科做)(本题满分14分)
如图,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,
CA =AA1 =M为侧棱CC1上一点,AMBA1
(Ⅰ)求证:AM⊥平面A1BC
(Ⅱ)求二面角BAMC的大小;
(Ⅲ)求点C到平面ABM的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分14分)如图,四棱锥E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F为CE上的点,
且BF平面ACE.
(1)求证:AEBE;
(2)求三棱锥D—AEC的体积;
(3)求二面角A—CD—E的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
P为正方形ABCD所在平面外一点,PA⊥面ABCD,AE⊥PB,求证:AE⊥PC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.如图,在四棱锥中,底面是矩形,平面分别是的中点.
(1)证明:平面
(2)求平面与平面夹角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间三条射线PA,PB,PC满足∠APC=∠APB=60°,∠BPC=90°,则二面角B-PA-C 的度数                                                                             
A.等于90°B.是小于120°的钝角
C.是大于等于120°小于等于135°的钝角D.是大于135°小于等于150°的钝角

查看答案和解析>>

同步练习册答案