精英家教网 > 高中数学 > 题目详情
12.项数为n的数列a1,a2,a3,…,an的前k项和为Sk(k=1,2,3,…,n),定义$\frac{{S}_{1}{+S}_{2}+…{+S}_{n}}{n}$为该项数列的“凯森和”,如果项数为99项的数列a1,a2,a3,…,a99的“凯森和”为1 000,那么项数为100的数列10,a1,a2,a3,…,a99的“凯森和”为(  )
A.991B.1 000C.1 090D.1 100

分析 由已知可得:$\frac{{S}_{1}+{S}_{2}+…+{S}_{99}}{99}$=1 000,而100,a1,a2,a3,…,a99的“凯森和”为$\frac{100+100+{S}_{1}+100+{S}_{2}+…+100+{S}_{99}}{100}$,化简即可得出.

解答 解:项数为99项的数列a1,a2,a3,…,a99的“凯森和”为1 000,
∴$\frac{{S}_{1}+{S}_{2}+…+{S}_{99}}{99}$=1 000,
∴100,a1,a2,a3,…,a99的“凯森和”为$\frac{100+100+{S}_{1}+100+{S}_{2}+…+100+{S}_{99}}{100}$=100+$\frac{99}{100}×$$\frac{{S}_{1}+{S}_{2}+…+{S}_{99}}{99}$=100+$\frac{99}{100}×1000$=1000,
故选:B.

点评 本题考查了新定义、方程解法、数列求和,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知曲线S:y=x3+4 及点A(1,5),则过点A 的曲线S 的切线方程为3x-y-2=0或3x-4y+17=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在空间四边形ABCD中,若P,R,Q分别是AB,AD,CD的中点,过P,R,Q的平面与BC交于点S,求证:S是BC的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知全集S=R,A⊆S,B⊆S,若命题p:$\sqrt{2}$∈(A∪B),则命题“¬p”是(  )
A.$\sqrt{2}$∉AB.$\sqrt{2}$∈∁sBC.$\sqrt{2}$∉A∩BD.$\sqrt{2}$∈(∁sA)∩(∁sB)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若a=log43,则4a=3;2a+2-a=$\frac{{4\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知等差数列{an}中,a4=7,a5+a7=26,求其前8项和S8=68.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}是等比数列,a3,a7是方程x2-5x+4=0的两根,则a5=(  )
A.2B.-2C.±2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在数列{an}中,a1=1,an+1-an>0,且${({a_{n+1}}-{a_n})^2}-2({a_{n+1}}+{a_n})+1=0$,猜想an=(  )
A.nB.n2C.n3D.$\sqrt{n+3}-\sqrt{n}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.比较下列各组中两数的大小:
①20152016<20162015
②20152016>20162015
③$\root{2016}{2015}<\root{2015}{2016}$;
④$\root{2016}{2015}>\root{2015}{2016}$,
其中正确结论的序号是(  )
A.①③B.②④C.①④D.②③

查看答案和解析>>

同步练习册答案