精英家教网 > 高中数学 > 题目详情
15.某人午觉醒来,打开收音机想听电台整点报时,则他等待不多于10分钟的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{5}$C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 由电台整点报时的时刻是任意的,知这是一个几何概型,电台整点报时知事件总数包含的时间长度是60,而他等待的时间不多于10分钟的事件包含的时间长度是10,两值作比得答案.

解答 解:∵电台整点报时,
∴事件总数包含的时间长度是60,
∵满足他等待的时间不多于10分钟的事件包含的时间长度是10,
由几何概型公式得到P=$\frac{10}{60}=\frac{1}{6}$,
故选:A.

点评 本题主要考查几何概型,明确测度比是时间长度比是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.有7个灯泡排成一排,现要求至少点亮其中的3个灯泡,且相邻的灯泡不能同时点亮,则不同的点亮方法有(  )
A.11种B.21种C.120种D.126种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,A,B,C所对的边分别为a,b,c,若1+$\frac{tanA}{tanB}$+$\frac{2c}{b}$=0,则A=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{3π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知p:“?x>0,有lnx+1≤x<ex成立”,q:“十进制数2017转化为八进制数为1473(8)”,则下列命题为真的是(  )
A.p∧qB.(¬p)∨qC.p∨(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果a>b,则下列不等式正确的是(  )
A.$\frac{1}{a}>\frac{1}{b}$B.2a>2bC.|a|>|b|D.a2>b2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列求导运算正确的是(  )
A.(3x)′=3xlog3eB.(x2cosx)′=-2xsinxC.(x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$D.(log2x)′=$\frac{1}{xln2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{2}$,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为45°,且λ$\overrightarrow{b}$-$\overrightarrow{a}$与$\overrightarrow{a}$垂直,则实数λ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数$f(x)=3sin(ωx+\frac{π}{6}),ω>0,x∈R$的最小正周期为$\frac{π}{2}$.
(1)求f(x)的解析式;
(2)利用“五点作图法”,画出f(x)在长度为一个周期的闭区间上的简图;
ωx+$\frac{π}{6}$
x
f(x)

(3)已知$f(\frac{α}{4}+\frac{π}{12})=\frac{9}{5}$,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在区间[0,2]上分别任取两个数m,n,若向量$\overrightarrow{a}$=(m,n),$\overrightarrow{b}$=(1,1),则|$\overrightarrow{a}-\overrightarrow{b}$|≤1的概率是(  )
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{8}$

查看答案和解析>>

同步练习册答案