精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
sinωx•cosωx-cos2ωx(ω>0)的周期为
π
2

(1)求ω的值;
(2)设△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,求此时函数f(x)的值域.
分析:(1)利用两角差的正弦公式的应用,化简f(x)的解析式,求出周期.
(2)利用余弦定理求出角x的范围,利用正弦汗水due单调性求出函数f(x)的值域.
解答:解:(1)函数f(x)=
3
sinωx•cosωx-cos2ωx
=
3
2
sin2ωx - 
1
2
cos2ωx - 
1
2
=sin(2ωx-
π
6
).
由f(x)的周期 T=
=
π
2
,求得ω=2.
(2)由(Ⅰ)得 f(x)=sin(4x-
π
6
 )-
1
2
,由题意,得 cosx=
a2+c2-b2
2ac
2ac-ac
2ac
=
1
2

又∵0<x<π,∴0<x≤
π
3
,∴-
π
6
<4x-
π
6
6
,∴-
1
2
≤sin(4x-
π
6
 )≤1,
∴-1≤sin(4x-
π
6
 )-
1
2
≤1-
1
2
=
1
2
,故f(x)的值域为[-1,
1
2
].
点评:本题考查正弦函数的定义域和值域,余弦定理的应用,两角差的正弦公式的应用,化简f(x)的解析式,是解题的突破口,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}(  )
A、是等比数列B、是等差数列C、从第2项起是等比数列D、是常数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有满足条件的m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x|x<a}.
(1)若A⊆B,求实数a的取值范围;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
a-1
(a≠1)在区间(0,4]上是增函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2log2x,g(x)=log2x.
(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]•g(x)的值域;
(2)如果对任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案