精英家教网 > 高中数学 > 题目详情
1.已知sinx=-$\frac{\sqrt{2}}{2}$、$\frac{π}{2}$<x<$\frac{3π}{2}$,则角x=(  )
A.$\frac{4π}{3}$B.$\frac{3π}{4}$C.$\frac{5π}{4}$D.$\frac{7π}{4}$

分析 直接利用特殊角的三角函数,即可得出结论.

解答 解:∵sinx=-$\frac{\sqrt{2}}{2}$,$\frac{π}{2}$<x<$\frac{3π}{2}$,
∴x=$\frac{5π}{4}$.
故选:C.

点评 本题考查特殊角的三角函数,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=ax2-2ax+2+b(a≠0),若f(x)在区间[2,3]上有最大值5,最小值2,则a+b=1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如果cos(π-A)=-$\frac{1}{2}$,那么cosA的值为(  )
A.--$\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合A={x|x≤1},B={x|x>p},要使A∩B=∅,则p应满足的条件是(  )
A.p<1B.p≤1C.p>1D.p≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.(文科)设函数f(x)=xm+ax的导数为f’(x)=2x+1,则数列{$\frac{1}{f(n)}$}的前n项和Sn取值范围是(  )
A.Sn<1B.0<Sn<1C.$\frac{1}{2}$<Sn≤1D.$\frac{1}{2}$≤Sn<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数$y=tan\frac{x}{a}$的最小正周期是(  )
A.B.|a|πC.$\frac{π}{a}$D.$\frac{π}{|a|}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,a,b,c分别为角A,B,C所对的边长,且c=-3bcosA,tanC=$\frac{3}{4}$.    
(1)求tanB的值; 
(2)若c=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|y=lnx},集合B={-2,-1,1,2},则A∩B=(  )
A.(0,+∞)B.{-1,-2}C.(1,2)D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知在四边形ABCD中,AD∥BC,AD=AB=a,∠BCD=45°,∠BAD=90°,将△ABD沿对角线BD折起,折起后点A的位置为P,且使平面PBD⊥平面BCD.
(1)在折叠前的四边形ABCD中,作AE⊥BD于E,过点E作EF⊥BC点F,求在折起后的图形中∠PEF的正切值.
(2)求BC与平面PDC所成的角.

查看答案和解析>>

同步练习册答案