精英家教网 > 高中数学 > 题目详情
3.函数f(x)=$\frac{1}{5}$sin(x+$\frac{π}{3}$)+cos(x-$\frac{π}{6}$)的最大值为(  )
A.$\frac{6}{5}$B.1C.$\frac{3}{5}$D.$\frac{1}{5}$

分析 利用诱导公式化简函数的解析式,通过正弦函数的最值求解即可.

解答 解:函数f(x)=$\frac{1}{5}$sin(x+$\frac{π}{3}$)+cos(x-$\frac{π}{6}$)=$\frac{1}{5}$sin(x+$\frac{π}{3}$)+cos(-x+$\frac{π}{6}$)=$\frac{1}{5}$sin(x+$\frac{π}{3}$)+sin(x+$\frac{π}{3}$)
=$\frac{6}{5}$sin(x+$\frac{π}{3}$)$≤\frac{6}{5}$.
故选:A.

点评 本题考查诱导公式的应用,三角函数的最值,正弦函数的有界性,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知α∈(0,$\frac{π}{2}$),tanα=2,则cos(α-$\frac{π}{4}$)=$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10$\sqrt{7}$cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)
(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;
(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),四点P1(1,1),P2(0,1),P3(-1,$\frac{{\sqrt{3}}}{2}$),P4(1,$\frac{{\sqrt{3}}}{2}$)中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\sqrt{3}$cos(2x-$\frac{π}{3}$)-2sinxcosx.
(I)求f(x)的最小正周期;
(II)求证:当x∈[-$\frac{π}{4}$,$\frac{π}{4}$]时,f(x)≥-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)
天数216362574
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=$\frac{1}{3}$,则cos(α-β)=-$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2$\frac{B}{2}$.
(1)求cosB;
(2)若a+c=6,△ABC的面积为2,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设O为坐标原点,动点M在椭圆C:$\frac{{x}^{2}}{2}$+y2=1上,过M作x轴的垂线,垂足为N,点P满足$\overrightarrow{NP}$=$\sqrt{2}$$\overrightarrow{NM}$.
(1)求点P的轨迹方程;
(2)设点Q在直线x=-3上,且$\overrightarrow{OP}$•$\overrightarrow{PQ}$=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.

查看答案和解析>>

同步练习册答案