精英家教网 > 高中数学 > 题目详情
17.设O为坐标原点,动点M在椭圆C:$\frac{{x}^{2}}{2}$+y2=1上,过M作x轴的垂线,垂足为N,点P满足$\overrightarrow{NP}$=$\sqrt{2}$$\overrightarrow{NM}$.
(1)求点P的轨迹方程;
(2)设点Q在直线x=-3上,且$\overrightarrow{OP}$•$\overrightarrow{PQ}$=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.

分析 (1)设M(x0,y0),由题意可得N(x0,0),设P(x,y),运用向量的坐标运算,结合M满足椭圆方程,化简整理可得P的轨迹方程;
(2)设Q(-3,m),P($\sqrt{2}$cosα,$\sqrt{2}$sinα),(0≤α<2π),运用向量的数量积的坐标表示,可得m,即有Q的坐标,求得椭圆的左焦点坐标,求得OQ,PF的斜率,由两直线垂直的条件:斜率之积为-1,即可得证.

解答 解:(1)设M(x0,y0),由题意可得N(x0,0),
设P(x,y),由点P满足$\overrightarrow{NP}$=$\sqrt{2}$$\overrightarrow{NM}$.
可得(x-x0,y)=$\sqrt{2}$(0,y0),
可得x-x0=0,y=$\sqrt{2}$y0
即有x0=x,y0=$\frac{y}{\sqrt{2}}$,
代入椭圆方程$\frac{{x}^{2}}{2}$+y2=1,可得$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{2}$=1,
即有点P的轨迹方程为圆x2+y2=2;
(2)证明:设Q(-3,m),P($\sqrt{2}$cosα,$\sqrt{2}$sinα),(0≤α<2π),
$\overrightarrow{OP}$•$\overrightarrow{PQ}$=1,可得($\sqrt{2}$cosα,$\sqrt{2}$sinα)•(-3-$\sqrt{2}$cosα,m-$\sqrt{2}$sinα)=1,
即为-3$\sqrt{2}$cosα-2cos2α+$\sqrt{2}$msinα-2sin2α=1,
解得m=$\frac{3(1+\sqrt{2}cosα)}{\sqrt{2}sinα}$,
即有Q(-3,$\frac{3(1+\sqrt{2}cosα)}{\sqrt{2}sinα}$),
椭圆$\frac{{x}^{2}}{2}$+y2=1的左焦点F(-1,0),
由$\overrightarrow{PF}$•$\overrightarrow{OQ}$=(-1-$\sqrt{2}$cosα,-$\sqrt{2}$sinα)•(-3,$\frac{3(1+\sqrt{2}cosα)}{\sqrt{2}sinα}$)
=3+3$\sqrt{2}$cosα-3(1+$\sqrt{2}$cosα)=0.
可得过点P且垂直于OQ的直线l过C的左焦点F.

点评 本题考查轨迹方程的求法,注意运用坐标转移法和向量的加减运算,考查圆的参数方程的运用和直线的斜率公式,以及向量的数量积的坐标表示和两直线垂直的条件:斜率之积为-1,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数f(x)=$\frac{1}{5}$sin(x+$\frac{π}{3}$)+cos(x-$\frac{π}{6}$)的最大值为(  )
A.$\frac{6}{5}$B.1C.$\frac{3}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设数列{an}满足a1=2,an+1=2an+2n+1(n∈N*).
(1)若bn=$\frac{{a}_{n}}{{2}^{n}}$,证明:数列{bn}为等差数列,并求出数列{bn}的通项公式;
(2)若cn=an+bn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.过直线x-y-2=0上的动点P作抛物线y=$\frac{1}{2}$x2的切线,切点分别为M,N,则直线MN过点(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=$\overrightarrow{OA}$•$\overrightarrow{OB}$,I2=$\overrightarrow{OB}$•$\overrightarrow{OC}$,I3=$\overrightarrow{OC}$•$\overrightarrow{OD}$,则(  )
A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.(1+$\frac{1}{x^2}$)(1+x)6展开式中x2的系数为(  )
A.15B.20C.30D.35

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数y=$\sqrt{4-{x}^{2}}$的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=(  )
A.(1,2)B.(1,2]C.(-2,1)D.[-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2+2cosx,g(x)=ex(cosx-sinx+2x-2),其中e≈2.71828…是自然对数的底数.
(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;
(Ⅱ)令h(x)=g (x)-a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知定点F(2,0),定直线l:x=$\frac{1}{2}$,动点P与点F的距离是它到直线l的距离的2倍,设点P的轨迹为E.
(1)求E的方程;
(2)若F1(-2,0),直线l1:y=x+t,t∈(-1,1)与曲线E交于C、D两点,求四边形F1CFD面积的最小值.

查看答案和解析>>

同步练习册答案