精英家教网 > 高中数学 > 题目详情
9.设函数y=$\sqrt{4-{x}^{2}}$的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=(  )
A.(1,2)B.(1,2]C.(-2,1)D.[-2,1)

分析 根据幂函数及对数函数定义域的求法,即可求得A和B,即可求得A∩B.

解答 解:由4-x2≥0,解得:-2≤x≤2,则函数y=$\sqrt{4-{x}^{2}}$的定义域[-2,2],
由对数函数的定义域可知:1-x>0,解得:x<1,则函数y=ln(1-x)的定义域(-∞,1),
则A∩B=[-2,1),
故选D.

点评 本题考查函数定义的求法,交集及其运算,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=$\frac{1}{3}$,则cos(α-β)=-$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在回归分析与独立性检验中:
①相关关系是一种确定关系  
②在回归模型中,x称为解释变量,y称为预报变量  
③R2越接近于1,表示回归的效果越好  
④在独立性检验中,|ad-bc|越大,两个分类变量关系越弱;|ad-bc|越小,两个分类变量关系越强  
⑤残差点比较均匀地落在水平的带状区域中,带状区域宽度越窄,回归方程的预报精度越高,
正确命题的个数为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设O为坐标原点,动点M在椭圆C:$\frac{{x}^{2}}{2}$+y2=1上,过M作x轴的垂线,垂足为N,点P满足$\overrightarrow{NP}$=$\sqrt{2}$$\overrightarrow{NM}$.
(1)求点P的轨迹方程;
(2)设点Q在直线x=-3上,且$\overrightarrow{OP}$•$\overrightarrow{PQ}$=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.9510.129.969.9610.019.929.9810.04
10.269.9110.1310.029.2210.0410.059.95
经计算得$\overline{x}$=$\frac{1}{16}\sum_{i=1}^{16}{x_i}$=9.97,s=$\sqrt{\frac{1}{16}\sum_{i=1}^{16}({x}_{i}-\overline{x})^{2}}$=$\sqrt{\frac{1}{16}(\sum_{i=1}^{16}{{x}_{i}}^{2}-16{\overline{x}}^{2})}$≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数$\overline{x}$作为μ的估计值$\hat μ$,用样本标准差s作为σ的估计值$\hat σ$,利用估计值判断是否需对当天的生产过程进行检查?剔除($\hat μ$-3$\hat σ,\hat μ$+3$\hat σ$)之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,$\sqrt{0.008}$≈0.09.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行两次如图所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次,第二次输出的a值分别为(  )
A.0,0B.1,1C.0,1D.1,0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数exf(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为①④.
①f(x)=2-x   ②f(x)=3-x       ③f(x)=x3  ④f(x)=x2+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为$\frac{9π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列推理正确的是(  )
A.如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖
B.因为a>b,a>c,所以a-b>a-c
C.若a,b均为正实数,则lg a+lg b≥$\sqrt{lga•lgb}$
D.若a为正实数,ab<0,则$\frac{a}{b}$+$\frac{b}{a}$=-($\frac{-a}{b}$+$\frac{-b}{a}$)≤-2 $\sqrt{(\frac{-a}{b})•(\frac{-b}{a})}$=-2

查看答案和解析>>

同步练习册答案