精英家教网 > 高中数学 > 题目详情
4.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.9510.129.969.9610.019.929.9810.04
10.269.9110.1310.029.2210.0410.059.95
经计算得$\overline{x}$=$\frac{1}{16}\sum_{i=1}^{16}{x_i}$=9.97,s=$\sqrt{\frac{1}{16}\sum_{i=1}^{16}({x}_{i}-\overline{x})^{2}}$=$\sqrt{\frac{1}{16}(\sum_{i=1}^{16}{{x}_{i}}^{2}-16{\overline{x}}^{2})}$≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数$\overline{x}$作为μ的估计值$\hat μ$,用样本标准差s作为σ的估计值$\hat σ$,利用估计值判断是否需对当天的生产过程进行检查?剔除($\hat μ$-3$\hat σ,\hat μ$+3$\hat σ$)之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,$\sqrt{0.008}$≈0.09.

分析 (1)通过P(X=0)可求出P(X≥1)=1-P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;
(2)(ⅰ)由(1)及知落在(μ-3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;
(ⅱ)通过样本平均数$\overline{x}$、样本标准差s估计$\hat μ$、$\hat σ$可知($\hat μ$-3$\hat σ,\hat μ$+3$\hat σ$)=(9.334,10.606),进而需剔除($\hat μ$-3$\hat σ,\hat μ$+3$\hat σ$)之外的数据9.22,利用公式计算即得结论.

解答 解:(1)由题可知尺寸落在(μ-3σ,μ+3σ)之内的概率为0.9974,
则落在(μ-3σ,μ+3σ)之外的概率为1-0.9974=0.0026,
因为P(X=0)=${C}_{16}^{0}$×(1-0.9974)0×0.997416≈0.9592,
所以P(X≥1)=1-P(X=0)=0.0408,
又因为X~B(16,0.0026),
所以E(X)=16×0.0026=0.0416;
(2)(ⅰ)如果生产状态正常,一个零件尺寸在($\hat μ$-3$\hat σ,\hat μ$+3$\hat σ$)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在($\hat μ$-3$\hat σ,\hat μ$+3$\hat σ$)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.
(ⅱ)由$\overline{x}$=9.97,s≈0.212,得μ的估计值为$\hat μ$=9.97,σ的估计值为$\hat σ$=0.212,由样本数据可以看出一个
零件的尺寸在($\hat μ$-3$\hat σ,\hat μ$+3$\hat σ$)之外,因此需对当天的生产过程进行检查.
剔除($\hat μ$-3$\hat σ,\hat μ$+3$\hat σ$)之外的数据9.22,剩下的数据的平均数为
$\frac{1}{15}$(16×9.97-9.22)=10.02,
因此μ的估计值为10.02.
$\sum_{i=1}^{16}{x_i}$2=16×0.2122+16×9.972≈1591.134,
剔除($\hat μ$-3$\hat σ,\hat μ$+3$\hat σ$)之外的数据9.22,剩下的数据的样本方差为
$\frac{1}{15}$(1591.134-9.222-15×10.022)≈0.008,
因此σ的估计值为$\sqrt{0.008}$≈0.09.

点评 本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,曲线y=x2+mx-2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:
(1)能否出现AC⊥BC的情况?说明理由;
(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知△ABC的面积为$5\sqrt{3},A=\frac{π}{6},AB=5$,则BC=$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=$\overrightarrow{OA}$•$\overrightarrow{OB}$,I2=$\overrightarrow{OB}$•$\overrightarrow{OC}$,I3=$\overrightarrow{OC}$•$\overrightarrow{OD}$,则(  )
A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上.若$\overrightarrow{PA}•\overrightarrow{PB}$≤20,则点P的横坐标的取值范围是[-5$\sqrt{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数y=$\sqrt{4-{x}^{2}}$的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=(  )
A.(1,2)B.(1,2]C.(-2,1)D.[-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是(  )
A.$\frac{5}{18}$B.$\frac{4}{9}$C.$\frac{5}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点为F,离心率为$\sqrt{2}$.若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{8}-\frac{{y}^{2}}{8}$=1C.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{8}$=1D.$\frac{{x}^{2}}{8}-\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数y=f(x)的定义域为R,对于?x∈R,f′(x)<f(x),且f(x+1)为偶函数,f(2)=1,不等式f(x)<ex的解集为(0,+∞).

查看答案和解析>>

同步练习册答案