分析 (1)利用点到直线的距离公式及点到直线的距离公式,即可整理即可求得E的方程;
(2)将直线方程代入双曲线方程,利用韦达定理及弦长公式即可求得丨CD丨,根据点到直线的距离公式,由绝对值的几何意义及二次函数的性质,即可求得四边形F1CFD面积的最小值.
解答 解:(1)设P(x,y),P到F的距离d=$\sqrt{(x-2)^{2}+{y}^{2}}$,P到定直线l:x=$\frac{1}{2}$的距离为丨x-$\frac{1}{2}$丨,
由题意可知:$\sqrt{(x-2)^{2}+{y}^{2}}$=2丨x-$\frac{1}{2}$丨,整理得:${x}^{2}-\frac{{y}^{2}}{3}=1$,(y≠0)
∴E的方程${x}^{2}-\frac{{y}^{2}}{3}=1$,(y≠0);
(2)由(1)设C(x1,y1),D(x2,y2),
$\left\{\begin{array}{l}{y=x+t}\\{{x}^{2}-\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得:2x2-2xt-(t2+3)=0,
x1+x2=t,x1+x2=-$\frac{{t}^{2}+3}{2}$,
则丨CD丨=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2}$$\sqrt{3{t}^{2}+6}$,
F1(-2,0)到直线y=x+t的距离d1=$\frac{丨-2+t丨}{\sqrt{2}}$,F(2,0)到y=x+t的距离d2=$\frac{丨2+t丨}{\sqrt{2}}$,
四边形F1CFD面积S=$\frac{1}{2}$×丨CD×丨(d1+d2)=$\frac{1}{2}$×$\sqrt{2}$$\sqrt{3{t}^{2}+6}$×($\frac{丨-2+t丨}{\sqrt{2}}$+$\frac{丨2+t丨}{\sqrt{2}}$)=$\frac{1}{2}$×$\sqrt{3{t}^{2}+6}$(丨t-2丨+丨t+2丨),t∈(-1,1),
由当t∈(-1,1),丨t-2丨+丨t+2丨=4,
∴S=2$\sqrt{3{t}^{2}+6}$,t∈(-1,1),
∴当t=0时,S取最小值,最小值为2$\sqrt{6}$,
四边形F1CFD面积的最小值2$\sqrt{6}$.
点评 本题考查双曲线的轨迹方程,直线与双曲线的位置关系,考查韦达定理,弦长公式,绝对值的几何意义,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,2] | B. | $[-2\sqrt{3},2]$ | C. | $[-2,2\sqrt{3}]$ | D. | $[-2\sqrt{3},2\sqrt{3}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| X | -1 | 0 | 1 | 2 |
| Pk | $\frac{1}{8}$ | $\frac{1}{8}$ | $\frac{1}{4}$ | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖 | |
| B. | 因为a>b,a>c,所以a-b>a-c | |
| C. | 若a,b均为正实数,则lg a+lg b≥$\sqrt{lga•lgb}$ | |
| D. | 若a为正实数,ab<0,则$\frac{a}{b}$+$\frac{b}{a}$=-($\frac{-a}{b}$+$\frac{-b}{a}$)≤-2 $\sqrt{(\frac{-a}{b})•(\frac{-b}{a})}$=-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com