14£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{£¨\frac{1}{2}£©^{x}£¬x£¼0}\\{x-2£¬x¡Ý0}\end{array}\right.$£¬Èôf[f£¨-2£©]=a£¬ÊµÊýx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x-a¡Ý0}\\{x+y¡Ü6}\\{2x-y¡Ü6}\end{array}\right.$£¬ÔòÄ¿±êº¯Êýz=$\frac{3x+4y+10}{x+2}$µÄ×î´óֵΪ8£®

·ÖÎö ¸ù¾Ý·Ö¶Îº¯ÊýµÄ±í´ïʽ£¬Çó³öaµÄÖµ£¬×÷³ö²»µÈʽ×é¶ÔÓ¦µÄÆ½ÃæÇøÓò£¬ÀûÓ÷Öʽº¯ÊýµÄÐÔÖʽáºÏÖ±ÏßбÂʵĹ«Ê½½øÐÐÇó½â¼´¿É£®

½â´ð ½â£ºf£¨-2£©=$£¨\frac{1}{2}£©^{-2}$=4£¬
Ôòa=f[f£¨-2£©]=f£¨4£©=4-2=2£¬
ÔòÔ¼ÊøÌõ¼þΪ$\left\{\begin{array}{l}{x-2¡Ý0}\\{x+y¡Ü6}\\{2x-y¡Ü6}\end{array}\right.$£¬
×÷³ö²»µÈʽ×é¶ÔÓ¦µÄÆ½ÃæÇøÓòÈçͼ£º
z=$\frac{3x+4y+10}{x+2}$=$\frac{3£¨x+2£©+4y+4}{x+2}$=3+4•$\frac{y+1}{x+2}$£¬
Éèk=$\frac{y+1}{x+2}$£¬
ÔòkµÄ¼¸ºÎÒâÒåÊÇÇøÓòÄڵĵ㵽¶¨µãD£¨-2£¬-1£©µÄбÂÊ£¬
Ôòz=3+4k£¬
ÓÉͼÏóÖªADµÄбÂÊ×î´ó£¬
ÓÉ$\left\{\begin{array}{l}{x=2}\\{x+y=6}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$£¬¼´A£¨2£¬4£©£¬
´Ëʱk=$\frac{4+1}{2+2}$=$\frac{5}{4}$£¬
Ôòz=3+4¡Á$\frac{5}{4}$=3+4=8£¬
¼´Ä¿±êº¯Êýz=$\frac{3x+4y+10}{x+2}$µÄ×î´óֵΪ8£¬
¹Ê´ð°¸Îª£º8

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÏßÐԹ滮µÄÓ¦Ó㬸ù¾ÝÌõ¼þÇó³öaµÄÖµ£¬ÀûÓ÷ÖʽµÄÓ¦ÓÃת»¯ÎªÖ±ÏßбÂÊÎÊÌâÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=x2+2cosx£¬g£¨x£©=ex£¨cosx-sinx+2x-2£©£¬ÆäÖÐe¡Ö2.71828¡­ÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£®
£¨¢ñ£©ÇóÇúÏßy=f£¨x£©Ôڵ㣨¦Ð£¬f£¨¦Ð£©£©´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©Áîh£¨x£©=g £¨x£©-a f£¨x£©£¨a¡ÊR£©£¬ÌÖÂÛh£¨x£©µÄµ¥µ÷ÐÔ²¢ÅжÏÓÐÎÞ¼«Öµ£¬Óм«ÖµÊ±Çó³ö¼«Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖª¶¨µãF£¨2£¬0£©£¬¶¨Ö±Ïßl£ºx=$\frac{1}{2}$£¬¶¯µãPÓëµãFµÄ¾àÀëÊÇËüµ½Ö±ÏßlµÄ¾àÀëµÄ2±¶£¬ÉèµãPµÄ¹ì¼£ÎªE£®
£¨1£©ÇóEµÄ·½³Ì£»
£¨2£©ÈôF1£¨-2£¬0£©£¬Ö±Ïßl1£ºy=x+t£¬t¡Ê£¨-1£¬1£©ÓëÇúÏßE½»ÓÚC¡¢DÁ½µã£¬ÇóËıßÐÎF1CFDÃæ»ýµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®º¯Êýf£¨x£©=$\frac{1}{x}$£¨log24x+1£©-2µÄͼÏ󣨡¡¡¡£©
A£®¹ØÓÚxÖá¶Ô³ÆB£®¹ØÓÚyÖá¶Ô³ÆC£®¹ØÓÚÔ­µã¶Ô³ÆD£®¹ØÓÚy=x¶Ô³Æ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªº¯Êý$f£¨x£©=\left\{\begin{array}{l}{2^x}\\ log_2^x\end{array}\right.$$\begin{array}{l}x¡Ü0\\ x£¾0\end{array}$£¬Èô$f£¨a£©=\frac{1}{2}$£¬Ôòa=£¨¡¡¡¡£©
A£®-1B£®-1»ò$\sqrt{2}$C£®$\sqrt{2}$D£®-1»ò$-\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªº¯Êý$f£¨x£©=\left\{{\begin{array}{l}{{x^2}-x}\\{x+1}\end{array}}\right.£¬\begin{array}{l}{£¨x¡Ý0£©}\\{£¨x£¼0£©}\end{array}$£¬Ôòf£¨2£©=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªÈýÀâ×¶A-BCDµÄËùÓÐÀⳤ¶¼ÏàµÈ£¬ÈôABÓëÆ½Ãæ¦ÁËù³É½ÇµÈÓÚ$\frac{¦Ð}{3}$£¬ÔòÆ½ÃæACDÓëÆ½Ãæ¦ÁËù³É½ÇµÄÕýÏÒÖµµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[$\frac{3-\sqrt{6}}{6}$£¬$\frac{3+\sqrt{6}}{6}$]B£®[$\frac{3-\sqrt{6}}{6}$£¬1]C£®[$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{3}}{6}$£¬$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}}{6}$]D£®[$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{3}}{6}$£¬1]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èôº¯Êý$f£¨x£©=\left\{\begin{array}{l}{3^x}-a£¬x¡Ü1\\ ln£¨{x-1}£©£¬x£¾1\end{array}\right.$ÓÐÁ½¸ö²»Í¬µÄÁãµã£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨0£¬1]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÔÚÈýÀâ×¶P-ABCÖУ¬PA¡ÍÆ½ÃæABC£¬AC¡ÍBC£¬DΪPCµÄÖе㣬EΪADµÄÖе㣬PA=AC=2£¬BC=1£®
£¨1£©ÇóÖ¤£ºAD¡ÍÆ½ÃæPBC£»
£¨2£©ÇóPEÓëÆ½ÃæABDËù³É½ÇµÄÕýÏÒÖµ£»
£¨3£©ÉèµãFÔÚÏß¶ÎPBÉÏ£¬ÇÒ$\frac{PF}{PB}$=¦Ë£¬EF¡ÎÆ½ÃæABC£¬ÇóʵÊý¦ËµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸