精英家教网 > 高中数学 > 题目详情
2.函数f(x)=$\frac{1}{x}$(log24x+1)-2的图象(  )
A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于y=x对称

分析 根据函数解析式判断函数的奇偶性即可.

解答 解:f(x)=$\frac{1}{x}$(log24x+1)-2=$\frac{1}{x}$(2x+1)-2=$\frac{1}{x}$,
则函数f(x)是奇函数,图象关于原点对称,
故选:C

点评 本题主要考查函数图象的对称性,根据条件先化简函数是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.执行两次如图所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次,第二次输出的a值分别为(  )
A.0,0B.1,1C.0,1D.1,0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}|x|+2,x<1\\ x+\frac{2}{x},x≥1.\end{array}$,设a∈R,若关于x的不等式f(x)≥|$\frac{x}{2}$+a|在R上恒成立,则a的取值范围是(  )
A.[-2,2]B.$[-2\sqrt{3},2]$C.$[-2,2\sqrt{3}]$D.$[-2\sqrt{3},2\sqrt{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知X的概率分布为
 X-1 0 1 2
 Pk $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{4}$$\frac{1}{2}$
求Y1=2X-1与Y2=X2的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列推理正确的是(  )
A.如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖
B.因为a>b,a>c,所以a-b>a-c
C.若a,b均为正实数,则lg a+lg b≥$\sqrt{lga•lgb}$
D.若a为正实数,ab<0,则$\frac{a}{b}$+$\frac{b}{a}$=-($\frac{-a}{b}$+$\frac{-b}{a}$)≤-2 $\sqrt{(\frac{-a}{b})•(\frac{-b}{a})}$=-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某公司的组织结构图如图所示,则开发部的直接领导是总经理.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x<0}\\{x-2,x≥0}\end{array}\right.$,若f[f(-2)]=a,实数x,y满足约束条件$\left\{\begin{array}{l}{x-a≥0}\\{x+y≤6}\\{2x-y≤6}\end{array}\right.$,则目标函数z=$\frac{3x+4y+10}{x+2}$的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.阅读下列伪代码,当a,b的输入值分别为2,3时,则输出的实数m的值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设复数z=x+(y-1)i(x,y∈R),若|z|≤1,则x+y≥2的概率为(  )
A.$\frac{1}{4}$B.$\frac{π-2}{4π}$C.$\frac{1}{2π}$D.$\frac{3π+2}{4π}$

查看答案和解析>>

同步练习册答案