分析 (1)由正方形ADD1A1可得PD⊥AD1,由AB⊥平面ADD1A1可得AB⊥PD,故而PD⊥平面ABC1D1;
(2)三棱锥P-BDC1的底面积为定值,由AD1∥BC1可知AD1∥平面BDC1,故P到平面BDC1的距离为定值,当P与A重合时,求出三棱锥C1-ABD的体积即可.
解答 证明:(1)在长方体ABCD-A1B1C1D1中,AB⊥平面AA1D1D,PD?平面AA1D1D,
∴AB⊥PD.
∵AD=AA1,∴四边形AA1D1D为正方形,P为对角线AD1 的中点,
∴PD⊥AD1,
又∵AB∩AD1=A,AB?平面ABC1D1,AD1?平面ABC1D1,
∴PD⊥平面ABC1D1.
(2)在长方体ABCD-A1B1C1D1中,
∵AD1∥BC1,BC1?平面BDC1,AD1?平面BDC1,
∴AD1∥平面BDC1,
∵P为线段AD1上的点,
∴点P到平面BDC1的距离为定值.而三角形BDC1的面积为定值,
∴三棱锥P-BDC1的体积为定值,即三棱锥D-PBC1的体积为定值.
V${\;}_{D-PB{C}_{1}}$=V${\;}_{P-BD{C}_{1}}$=V${\;}_{A-BD{C}_{1}}$=V${\;}_{{C}_{1}-ABD}$=$\frac{1}{3}{S}_{△ABD}•C{C}_{1}$=$\frac{1}{3}×\frac{1}{2}×2×1×1=\frac{1}{3}$.
点评 本题考查了线面垂直的判定,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 167顷 | B. | 168顷 | C. | 169顷 | D. | 673顷 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 平均车速超过100km/h人数 | 平均车速不超过 100km/h人数 | 合计 | |
| 男性驾驶员人数 | 40 | 15 | 55 |
| 女性驾驶员人数 | 20 | 25 | 45 |
| 合计 | 60 | 40 | 100 |
| P(Χ2≥k0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com