| A. | $\frac{9\sqrt{2}}{4}$ | B. | $\frac{19\sqrt{2}}{8}$ | C. | 2$\sqrt{2}$ | D. | 4$\sqrt{2}$ |
分析 由y2=2px的焦点坐标为F(1,0),所以p>0,且$\frac{P}{2}$=1,从而求得p值,设与直线x+y+5=0平行的抛物线的切线方程为x+y+m=0,直线x+y+5=0与切线距离即为|PQ|的最小值,联立切线方程与抛物线方程消掉x得y的二次方程,令△=0可求得m值,从而得切线方程,根据平行线间的间距离公式即可求得答案.
解答 解:因为y2=2px的焦点坐标为F(1,0),
所以p>0,且$\frac{P}{2}$=1,解得p=2,
所以抛物线方程为y2=4x,
设与直线x+y+5=0平行的抛物线的切线方程为x+y+m=0,
由$\left\{\begin{array}{l}{x+y+m=0}\\{{y}^{2}=4x}\end{array}\right.$,得y2+4y+4m=0,
令△=0,即42-4×4m=0,解得m=1,
则切线方程为x+y+1=0,
两平行线间的距离d=$\frac{|5-1|}{\sqrt{2}}$=2$\sqrt{2}$,
即为|PQ|的最小值.
故选C.
点评 本题考查直线与圆锥曲线的位置关系、抛物线的性质,考查转化思想,解决本题的关键把|PQ|的最小值转化为直线与抛物线切线间的距离求解.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{35}$ | B. | $\frac{{y}^{2}}{36}$+$\frac{{x}^{2}}{35}$=1 | C. | $\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{5}$=1 | D. | 以上都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 患心脏病 | 不患心脏病 | 合计 | |
| 男 | 20 | 5 | 25 |
| 女 | 10 | 15 | 25 |
| 合计 | 30 | 20 | 50 |
| P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| A. | 95% | B. | 99% | C. | 99.5% | D. | 99.9% |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com