精英家教网 > 高中数学 > 题目详情
3.已知点A(1,2)在抛物线C:y2=4x上,过点A作两条直线分别交抛物线于点D,E,直线AD,AE的斜率分别为kAD,KAE.若直线DE过点(-1,-2),则kAD•kAE=(  )
A.4B.3C.2D.1

分析 通过利用过F点直线DE与抛物线C方程,利用韦达定理计算即可.

解答 解:设F(-1,-2),过F点直线DE方程为:y+2=k(x+1),
联立$\left\{\begin{array}{l}{{y}^{2}=4x}\\{y+2=k(x+1)}\end{array}\right.$,消去x、整理得:ky2-4y+4k-8=0,
由题意及韦达定理可得:y1+y2=$\frac{4}{k}$,y1y2=$\frac{4k-8}{k}$,
∴x1+x2=$\frac{{y}_{1}+{y}_{2}+4-2k}{k}$=$\frac{4+4k-2{k}^{2}}{{k}^{2}}$,x1x2=$\frac{({y}_{1}+2-k)({y}_{2}+2-k)}{{k}^{2}}$=$\frac{4-4k+{k}^{2}}{{k}^{2}}$,
∴kAD•kAE=$\frac{{y}_{1}-2}{{x}_{1}-1}$•$\frac{{y}_{2}-2}{{x}_{2}-1}$
=$\frac{{y}_{1}{y}_{2}-2({y}_{1}+{y}_{2})+4}{{x}_{1}{x}_{2}-({x}_{1}+{x}_{2})+1}$
=$\frac{\frac{4k-8}{k}-2•\frac{4}{k}+4}{\frac{4-4k+{k}^{2}}{{k}^{2}}-\frac{4+4k-2{k}^{2}}{{k}^{2}}+1}$
=2,
故选:C.

点评 本题是一道直线与抛物线的综合题,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若双曲线E:$\frac{x^2}{9}-\frac{y^2}{16}$=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于(  )
A.11B.9C.5D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=axlnx,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数,若f′(1)=3,则a的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知{an}是等差数列,公差d不为零,若a2,a3,a7成等比数列,且2a1+a2=1,则a1=$\frac{2}{3}$,d=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.
(Ⅰ)证明:A1D⊥平面A1BC;
(Ⅱ)求直线A1B和平面BB1C1C所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{|2x+1|,x≤1}\\{{log}_{2}(x-1),x>1}\end{array}\right.$,若f(x1)=f(x2)=f(x3)(x1,x2,x3互不相等),则实数x1+x2+x3的取值范围为(1,8).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个三棱锥的三视图如图所示,其中俯视图为等腰直角三角形,正视图和侧视图是全等的等腰三角形,则此三棱外接球的表面积为(  )
A.16πB.C.D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛物线y2=4x,直线l经过该抛物线的焦点F与抛物线交于A、B两点(A点在第一象限),且$\overrightarrow{BA}$=4$\overrightarrow{BF}$,则三角形AOB(O为坐标原点)的面积为(  )
A.$\frac{8\sqrt{3}}{3}$B.$\frac{8\sqrt{2}}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{4\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点与抛物线y2=-8x的焦点重合,斜率为1的直线l与双曲线交于A、B两点,若A,B中点坐标为(-3,-1),则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\frac{3\sqrt{2}}{2}$C.$\sqrt{3}$D.$\frac{2}{3}$$\sqrt{3}$

查看答案和解析>>

同步练习册答案