精英家教网 > 高中数学 > 题目详情
7.如图,在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.
(Ⅰ)证明:A1D⊥平面A1BC;
(Ⅱ)求直线A1B和平面BB1C1C所成的角的正弦值.

分析 (I)连接AO,A1D,根据几何体的性质得出A1O⊥A1D,A1D⊥BC,利用直线平面的垂直定理判断.
(II)利用空间向量的垂直得出平面BB1C1C的法向量$\overrightarrow{n}$=($\sqrt{7}$,0,1),|根据与$\overrightarrow{B{A}_{1}}$数量积求解余弦值,即可得出直线A1B和平面BB1C1C所成的角的正弦值.

解答 证明:(I)∵AB=AC=2,D是B1C1的中点.
∴A1D⊥B1C1
∵BC∥B1C1
∴A1D⊥BC,
∵A1O⊥面ABC,A1D∥AO,
∴A1O⊥AO,A1O⊥BC
∵BC∩AO=O,A1O⊥A1D,A1D⊥BC
∴A1D⊥平面A1BC

解:(II)
建立坐标系如图
∵在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4
∴O(0,0,0),B(0,$\sqrt{2}$,0),B1(-$\sqrt{2}$,$\sqrt{2}$,$\sqrt{14}$),A1(0,0,$\sqrt{14}$)
即$\overrightarrow{{A}_{1}B}$=(0,$\sqrt{2}$,-$\sqrt{14}$),$\overrightarrow{OB}$=(0,$\sqrt{2}$,0),$\overrightarrow{B{B}_{1}}$=($-\sqrt{2}$,0,$\sqrt{14}$),
设平面BB1C1C的法向量为$\overrightarrow{n}$=(x,y,z),
$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{OB}=0}\\{\overrightarrow{n}•\overrightarrow{B{B}_{1}}=0}\end{array}\right.$即得出$\left\{\begin{array}{l}{y=0}\\{-\sqrt{2}x+\sqrt{14}z=0}\end{array}\right.$
得出$\overrightarrow{n}$=($\sqrt{7}$,0,1),|$\overrightarrow{B{A}_{1}}$|=4,|$\overrightarrow{n}$|=$2\sqrt{2}$
∵$\overrightarrow{n}•\overrightarrow{B{A}_{1}}$=$\sqrt{14}$,
∴cos<$\overrightarrow{n}$,$\overrightarrow{B{A}_{1}}$>=$\frac{\sqrt{14}}{4×2\sqrt{2}}$=$\frac{\sqrt{7}}{8}$,
可得出直线A1B和平面BB1C1C所成的角的正弦值为$\frac{\sqrt{7}}{8}$

点评 本题考查了空间几何体的性质,直线平面的垂直问题,空间向量的运用,空间想象能力,计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1,
(Ⅰ)若D为线段AC的中点,求证;AC⊥平面PDO;
(Ⅱ)求三棱锥P-ABC体积的最大值;
(Ⅲ)若BC=$\sqrt{2}$,点E在线段PB上,求CE+OE的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.阅读如图所示的程序框图,运行相应的程序,则输出i的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设α,β是两个不同的平面,l,m是两条不同的直线,且l?α,m?β,(  )
A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤1}\\{x+\frac{6}{x}-6,x>1}\end{array}\right.$,则f(f(-2))=$-\frac{1}{2}$,f(x)的最小值是2$\sqrt{6}$-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知点A(1,2)在抛物线C:y2=4x上,过点A作两条直线分别交抛物线于点D,E,直线AD,AE的斜率分别为kAD,KAE.若直线DE过点(-1,-2),则kAD•kAE=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A,B分别为椭圆$\frac{x{\;}^{2}}{a{\;}^{2}}$+$\frac{y{\;}^{2}}{b{\;}^{2}}$=1(a>b>0)的右顶点和上顶点,直线y=kx(k>0)与椭圆交于C,D两点,若四边形ABCD的面积最大值为2c2,则椭圆的离心率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.安排A、B、C、D、E、F六名义工照顾甲、乙、丙三位老人,每两位义工照顾一位老人,考虑到义工与老人住址距离问题,义工A不安排照顾老人甲,义工B不安排照顾老人乙,安排方法有(  )种.
A.30B.40C.42D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,过点F做与x轴垂直的直线交两渐近线于A、B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,λμ=$\frac{4}{25}$(λ,μ∈R),则双曲线的离心率e是(  )
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$C.$\frac{5}{2}$D.$\frac{5}{4}$

查看答案和解析>>

同步练习册答案