分析 由分段函数的特点易得f(f(-2))=的值;分别由二次函数和基本不等式可得各段的最小值,比较可得.
解答 解:由题意可得f(-2)=(-2)2=4,
∴f(f(-2))=f(4)=4+$\frac{6}{4}$-6=-$\frac{1}{2}$;
∵当x≤1时,f(x)=x2,
由二次函数可知当x=0时,函数取最小值0;
当x>1时,f(x)=x+$\frac{6}{x}$-6,
由基本不等式可得f(x)=x+$\frac{6}{x}$-6≥2$\sqrt{x•\frac{6}{x}}$-6=2$\sqrt{6}$-6,
当且仅当x=$\frac{6}{x}$即x=$\sqrt{6}$时取到等号,即此时函数取最小值2$\sqrt{6}$-6;
∵2$\sqrt{6}$-6<0,∴f(x)的最小值为2$\sqrt{6}$-6
故答案为:-$\frac{1}{2}$;2$\sqrt{6}$-6
点评 本题考查函数的最值,涉及二次函数的性质和基本不等式,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 直线 | B. | 抛物线 | C. | 椭圆 | D. | 双曲线的一支 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (-∞,ln$\frac{3}{5}$) | C. | (ln$\frac{3}{5}$,0) | D. | (-∞,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com