精英家教网 > 高中数学 > 题目详情
5.设方程(m+1)|ex-1|-1=0的两根分别为x1,x2(x1<x2),方程|ex-1|-m=0的两根分别为x3,x4(x3<x4).若m∈(0,$\frac{1}{2}$),则(x4+x1)-(x3+x2)的取值范围为(  )
A.(-∞,0)B.(-∞,ln$\frac{3}{5}$)C.(ln$\frac{3}{5}$,0)D.(-∞,-1)

分析 由条件求得x1,x2,x3,x4,得到(x4+x1)-(x3+x2)=ln$\frac{{m}^{2}+m}{2-m-{m}^{2}}$.令t=$\frac{{m}^{2}+m}{2-m-{m}^{2}}$,则原式=lnt,利用不等式的基本性质求得$\frac{1}{t}$的范围,可得t的范围,
从而求得lnt的范围,即为所求.

解答 解:由方程(m+1)|ex-1|-1=0的两根为x1,x2(x1<x2),可得$1-{e}^{{x}_{1}}=\frac{1}{m+1}$,${e}^{{x}_{2}}-1=\frac{1}{m+1}$,
求得x1=ln$\frac{m}{m+1}$,x2=ln$\frac{m+2}{m+1}$.
由方程|ex-1|-m=0的两根为x3,x4(x3<x4),可得$1-{e}^{{x}_{3}}=m,{e}^{{x}_{4}}-1=m$,
求得x3=ln(1-m),x4=ln(1+m).
∴(x4+x1)-(x3+x2)=lnm-ln$\frac{(2+m)(1-m)}{m+1}$=ln$\frac{{m}^{2}+m}{2-m-{m}^{2}}$.
令t=$\frac{{m}^{2}+m}{2-m-{m}^{2}}$,则原式=lnt,且$\frac{1}{t}=-1+\frac{2}{{m}^{2}+m}=-1+\frac{2}{(m+\frac{1}{2})^{2}-\frac{1}{4}}$.
由m∈(0,$\frac{1}{2}$),可得 0<$(m+\frac{1}{2})^{2}-\frac{1}{4}$<$\frac{3}{4}$,$\frac{2}{(m+\frac{1}{2})^{2}-\frac{1}{4}}>\frac{8}{3}$,
∴$\frac{1}{t}=-1+\frac{2}{(m+\frac{1}{2})^{2}-\frac{1}{4}}>\frac{5}{3}$,则0$<t<\frac{3}{5}$.
故原式=lnt∈(-∞,ln$\frac{3}{5}$),
故选:B.

点评 本题主要考查指数函数的综合应用,不等式的基本性质,二次函数的性质,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若变量x,y满足约束条件$\left\{\begin{array}{l}x+2y≥0\\ x-y≤0\\ x-2y+2≥0\end{array}\right.$则z=2x-y的最小值等于(  )
A.$-\frac{5}{2}$B.-2C.$-\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°,点E和F分别在线段BC和DC上,且$\overrightarrow{BE}$=$\frac{2}{3}$$\overrightarrow{BC}$,$\overrightarrow{DF}$=$\frac{1}{6}$$\overrightarrow{DC}$,则$\overrightarrow{AE}$•$\overrightarrow{AF}$的值为$\frac{29}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤1}\\{x+\frac{6}{x}-6,x>1}\end{array}\right.$,则f(f(-2))=$-\frac{1}{2}$,f(x)的最小值是2$\sqrt{6}$-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=x2+ax+b(a,b∈R).
(Ⅰ)当b=$\frac{{a}^{2}}{4}$+1时,求函数f(x)在[-1,1]上的最小值g(a)的表达式.
(Ⅱ)已知函数f(x)在[-1,1]上存在零点,0≤b-2a≤1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A,B分别为椭圆$\frac{x{\;}^{2}}{a{\;}^{2}}$+$\frac{y{\;}^{2}}{b{\;}^{2}}$=1(a>b>0)的右顶点和上顶点,直线y=kx(k>0)与椭圆交于C,D两点,若四边形ABCD的面积最大值为2c2,则椭圆的离心率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,AB=3,AC=4,BC=5.若I为△ABC的内心,则$\overrightarrow{CI}$•$\overrightarrow{CB}$的值为(  )
A.6B.10C.12D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知平面上的动点P与点N(0,1)连线的斜率为k1,线段PN的中点与原点连线的斜率为k2,k1k2=-$\frac{1}{{m}^{2}}$(m>1),动点P的轨迹为C.
(1)求曲线C的方程;
(2)是否存在同时满足一下条件的圆:①以曲线C的弦AB为直径;②过点N;③直径|AB|=$\sqrt{2}$|NB|.若存在,指出共有几个;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知圆x2+y2=4,点A($\sqrt{3}$,0),动点M在圆上运动,O为坐标原点,则∠OMA的最大值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

同步练习册答案