精英家教网 > 高中数学 > 题目详情
13.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.
(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(2)若面DEF与面ABCD所成二面角的大小为$\frac{π}{3}$,求$\frac{DC}{BC}$的值.

分析 解法1)(1)直线与直线,直线与平面的垂直的转化证明得出PB⊥EF,DE∩FE=E,所以PB⊥平面DEF,即可判断DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,确定直角.
(2)根据公理2得出DG是平面DEF与平面ACBD的交线.利用直线平面的垂直判断出DG⊥DF,DG⊥DB,根据平面角的定义得出∠BDF是面DEF与面ABCD所成二面角的平面角,转化到直角三角形求解即可.
解法2)
(1)以D为原点,射线DA,DC,DP分别为x,y,z轴的正半轴,建立空间直角坐标系,运用向量的数量积判断即可.
2)由PD⊥底面ABCD,所以$\overrightarrow{DP}$=(0,0,1)是平面ACDB的一个法向量;由(Ⅰ)知,PB⊥平面DEF,所以$\overrightarrow{BP}$=(-λ,-1,1)是平面DEF的一个法向量.根据数量积得出夹角的余弦即可得出所求解的答案.

解答 解法1)(1)因为PD⊥底面ABCD,所以PD⊥BC,
由底面ABCD为长方形,有BC⊥CD,而PD∩CD=D,
所以BC⊥平面PCD.而DE?平面PDC,所以BC⊥DE.
又因为PD=CD,点E是PC的中点,所以DE⊥PC.
而PC∩CB=C,所以DE⊥平面PBC.而PB?平面PBC,所以PB⊥DE.
又PB⊥EF,DE∩FE=E,所以PB⊥平面DEF.
由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,
即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB.
(2)如图1,

在面BPC内,延长BC与FE交于点G,则DG是平面DEF与平面ACBD的交线.
由(Ⅰ)知,PB⊥平面DEF,所以PB⊥DG.
又因为PD⊥底面ABCD,所以PD⊥DG.而PD∩PB=P,所以DG⊥平面PBD.
所以DG⊥DF,DG⊥DB
故∠BDF是面DEF与面ABCD所成二面角的平面角,
设PD=DC=1,BC=λ,有BD=$\sqrt{1+{λ}^{2}}$,
在Rt△PDB中,由DF⊥PB,得∠DPB=∠FDB=$\frac{π}{3}$,
则 tan$\frac{π}{3}$=tan∠DPF=$\frac{DB}{PD}$=$\sqrt{1+{λ}^{2}}$=$\sqrt{3}$,解得$λ=\sqrt{2}$.
所以$\frac{DC}{CB}$=$\frac{1}{λ}$=$\frac{\sqrt{2}}{2}$
故当面DEF与面ABCD所成二面角的大小为$\frac{π}{3}$时,$\frac{DC}{BC}$=$\frac{\sqrt{2}}{2}$.
(解法2)
(1)以D为原点,射线DA,DC,DP分别为x,y,z轴的正半轴,建立空间直角坐标系.设PD=DC=1,BC=λ,
则D(0,0,0),P(0,0,1),B(λ,1,0),C(0,1,0),$\overrightarrow{PB}$=(λ1,-1),点E是PC的中点,所以E(0,$\frac{1}{2}$,$\frac{1}{2}$),$\overrightarrow{DE}$=(0,$\frac{1}{2}$,$\frac{1}{2}$),
于是$\overrightarrow{PB}$$•\overrightarrow{DE}$=0,即PB⊥DE.
又已知EF⊥PB,而ED∩EF=E,所以PB⊥平面DEF.
因$\overrightarrow{PC}$=(0,1,-1),$\overrightarrow{DE}$$•\overrightarrow{PC}$=0,则DE⊥PC,所以DE⊥平面PBC.
由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,
即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB.
(2)由PD⊥底面ABCD,所以$\overrightarrow{DP}$=(0,0,1)是平面ACDB的一个法向量;
由(Ⅰ)知,PB⊥平面DEF,所以$\overrightarrow{BP}$=(-λ,-1,1)是平面DEF的一个法向量.
若面DEF与面ABCD所成二面角的大小为$\frac{π}{3}$,
则运用向量的数量积求解得出cos$\frac{π}{3}$=$\frac{1}{\sqrt{{λ}^{2}+2}}$=$\frac{1}{2}$,
解得$λ=\sqrt{2}$.所以所以$\frac{DC}{CB}$=$\frac{1}{λ}$=$\frac{\sqrt{2}}{2}$
故当面DEF与面ABCD所成二面角的大小为$\frac{π}{3}$时,$\frac{DC}{BC}$=$\frac{\sqrt{2}}{2}$.

点评 本题综合考查了空间直线平面的垂直问题,直线与直线,直线与平面的垂直的转化,空间角的求解,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.
(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)
乘客P1P2P3P4P5
座位号32145
32451
32415
32541
(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P5坐到5号座位的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若变量x,y满足约束条件$\left\{\begin{array}{l}x+2y≥0\\ x-y≤0\\ x-2y+2≥0\end{array}\right.$则z=2x-y的最小值等于(  )
A.$-\frac{5}{2}$B.-2C.$-\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xoy中,圆C的参数方程为$\left\{\begin{array}{l}{x=1+3cost}\\{y=-2+3sint}\end{array}\right.$(t为参数).在极坐标系(与平面直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴),直线l的方程为$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=m,(m∈R)
(1)求圆C的普通方程及直线l的直角坐标方程;
(2)设圆心C到直线l的距离等于2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设x∈R,[x]表示不超过x的最大整数.若存在实数t,使得[t]=1,[t2]=2,…,[tn]=n同时成立,则正整数n的最大值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.阅读如图所示的程序框图,运行相应的程序,则输出i的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°,点E和F分别在线段BC和DC上,且$\overrightarrow{BE}$=$\frac{2}{3}$$\overrightarrow{BC}$,$\overrightarrow{DF}$=$\frac{1}{6}$$\overrightarrow{DC}$,则$\overrightarrow{AE}$•$\overrightarrow{AF}$的值为$\frac{29}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤1}\\{x+\frac{6}{x}-6,x>1}\end{array}\right.$,则f(f(-2))=$-\frac{1}{2}$,f(x)的最小值是2$\sqrt{6}$-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知平面上的动点P与点N(0,1)连线的斜率为k1,线段PN的中点与原点连线的斜率为k2,k1k2=-$\frac{1}{{m}^{2}}$(m>1),动点P的轨迹为C.
(1)求曲线C的方程;
(2)是否存在同时满足一下条件的圆:①以曲线C的弦AB为直径;②过点N;③直径|AB|=$\sqrt{2}$|NB|.若存在,指出共有几个;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案