精英家教网 > 高中数学 > 题目详情
8.设x∈R,[x]表示不超过x的最大整数.若存在实数t,使得[t]=1,[t2]=2,…,[tn]=n同时成立,则正整数n的最大值是(  )
A.3B.4C.5D.6

分析 由新定义可得t的范围,验证可得最大的正整数n为4.

解答 解:若[t]=1,则t∈[1,2),
若[t2]=2,则t∈[$\sqrt{2}$,$\sqrt{3}$)(因为题目需要同时成立,则负区间舍去),
若[t3]=3,则t∈[$\root{3}{3}$,$\root{3}{4}$),
若[t4]=4,则t∈[$\root{4}{4}$,$\root{4}{5}$),
若[t5]=5,则t∈[$\root{5}{5}$,$\root{5}{6}$),
其中$\sqrt{3}$≈1.732,$\root{3}{4}$≈1.587,$\root{4}{5}$≈1.495,$\root{5}{6}$≈1.431<1.495,
通过上述可以发现,当t=4时,可以找到实数t使其在区间[1,2)∩[$\sqrt{2}$,$\sqrt{3}$)∩[$\root{3}{3}$,$\root{3}{4}$)∩[$\root{4}{4}$,$\root{4}{5}$)上,
但当t=5时,无法找到实数t使其在区间[1,2)∩[$\sqrt{2}$,$\sqrt{3}$)∩[$\root{3}{3}$,$\root{3}{4}$)∩[$\root{4}{4}$,$\root{4}{5}$)∩[$\root{5}{5}$,$\root{5}{6}$)
上,
∴正整数n的最大值4
故选:B.

点评 本题考查简单的演绎推理,涉及新定义,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b (e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是(  )
A.16小时B.20小时C.24小时D.28小时

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx-$\frac{(x-1)^{2}}{2}$.
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)证明;当x>1时,f(x)<x-1;
(Ⅲ)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x0)时,恒有f(x)>k(x-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在几何体ABCDE中,四边形ABCD是矩形,AB⊥平面BEC,BE⊥EC,AB=BE=EC=2,G,F分别是线段BE,DC的中点.
(1)求证:GF∥平面ADE;
(2)求平面AEF与平面BEC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.i为虚数单位,i607的共轭复数为(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.
(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(2)若面DEF与面ABCD所成二面角的大小为$\frac{π}{3}$,求$\frac{DC}{BC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x-2)2+y2=3相切,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{13}$=1B.$\frac{{x}^{2}}{13}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{3}$-y2=1D.x2-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB=30°,则点P的轨迹是(  )
A.直线B.抛物线C.椭圆D.双曲线的一支

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,圆锥的底面直径AB=2,母线长VA=3,点C在母线长VB上,且VC=1,有一只蚂蚁沿圆锥的侧面从点A到点C,则这只蚂蚁爬行的最短距离是(  )
A.$\sqrt{13}$B.$\sqrt{7}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案