精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=lnx-$\frac{(x-1)^{2}}{2}$.
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)证明;当x>1时,f(x)<x-1;
(Ⅲ)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x0)时,恒有f(x)>k(x-1).

分析 (Ⅰ)求导数,利用导数大于0,可求函数f(x)的单调增区间;
(Ⅱ)令F(x)=f(x)-(x-1),证明F(x)在[1,+∞)上单调递减,可得结论;
(Ⅲ)分类讨论,令G(x)=f(x)-k(x-1)(x>0),利用函数的单调性,可得实数k的所有可能取值.

解答 解:(Ⅰ)∵f(x)=lnx-$\frac{(x-1)^{2}}{2}$,
∴f′(x)=$\frac{-{x}^{2}+x+1}{x}$>0(x>0),
∴0<x<$\frac{1+\sqrt{5}}{2}$,
∴函数f(x)的单调增区间是(0,$\frac{1+\sqrt{5}}{2}$);
(Ⅱ)令F(x)=f(x)-(x-1),则F′(x)=$\frac{1-{x}^{2}}{x}$
当x>1时,F′(x)<0,
∴F(x)在[1,+∞)上单调递减,
∴x>1时,F(x)<F(1)=0,
即当x>1时,f(x)<x-1;
(Ⅲ)由(Ⅱ)知,k=1时,不存在x0>1满足题意;
当k>1时,对于x>1,有f(x)<x-1<k(x-1),则f(x)<k(x-1),
从而不存在x0>1满足题意;
当k<1时,令G(x)=f(x)-k(x-1)(x>0),则
G′(x)=$\frac{-{x}^{2}+(1-k)x+1}{x}$=0,可得x1=$\frac{1-k-\sqrt{(1-k)^{2}+4}}{2}$<0,x2=$\frac{1-k+\sqrt{(1-k)^{2}+4}}{2}$>1,
当x∈(1,x2)时,G′(x)>0,故G(x)在(1,x2)上单调递增,
从而x∈(1,x2)时,G(x)>G(1)=0,即f(x)>k(x-1),
综上,k的取值范围为(-∞,1).

点评 本题考查导数知识的综合运用,考查函数的单调性,考查不等式的证明,正确构造函数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个.
(Ⅰ)求三种粽子各取到1个的概率;
(Ⅱ)设X表示取到的豆沙粽个数,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设f(x)=x-sinx,则f(x)(  )
A.既是奇函数又是减函数B.既是奇函数又是增函数
C.是有零点的减函数D.是没有零点的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某几何体的三视图如图所示,则该几何体的表面积等于(  )
A.8+2$\sqrt{2}$B.11+2$\sqrt{2}$C.14+2$\sqrt{2}$D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.等差数列{an}中,a2=4,a4+a7=15.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2${\;}^{{a}_{n}-2}$+n,求b1+b2+b3+…+b10的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若变量x,y满足约束条件$\left\{\begin{array}{l}x+2y≥0\\ x-y≤0\\ x-2y+2≥0\end{array}\right.$则z=2x-y的最小值等于(  )
A.$-\frac{5}{2}$B.-2C.$-\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若锐角△ABC的面积为$10\sqrt{3}$,且AB=5,AC=8,则BC等于7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设x∈R,[x]表示不超过x的最大整数.若存在实数t,使得[t]=1,[t2]=2,…,[tn]=n同时成立,则正整数n的最大值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=x2+ax+b(a,b∈R).
(Ⅰ)当b=$\frac{{a}^{2}}{4}$+1时,求函数f(x)在[-1,1]上的最小值g(a)的表达式.
(Ⅱ)已知函数f(x)在[-1,1]上存在零点,0≤b-2a≤1,求b的取值范围.

查看答案和解析>>

同步练习册答案